14,726 research outputs found
General solution of an exact correlation function factorization in conformal field theory
We discuss a correlation function factorization, which relates a three-point
function to the square root of three two-point functions. This factorization is
known to hold for certain scaling operators at the two-dimensional percolation
point and in a few other cases. The correlation functions are evaluated in the
upper half-plane (or any conformally equivalent region) with operators at two
arbitrary points on the real axis, and a third arbitrary point on either the
real axis or in the interior. This type of result is of interest because it is
both exact and universal, relates higher-order correlation functions to
lower-order ones, and has a simple interpretation in terms of cluster or loop
probabilities in several statistical models. This motivated us to use the
techniques of conformal field theory to determine the general conditions for
its validity.
Here, we discover a correlation function which factorizes in this way for any
central charge c, generalizing previous results. In particular, the
factorization holds for either FK (Fortuin-Kasteleyn) or spin clusters in the
Q-state Potts models; it also applies to either the dense or dilute phases of
the O(n) loop models. Further, only one other non-trivial set of highest-weight
operators (in an irreducible Verma module) factorizes in this way. In this case
the operators have negative dimension (for c < 1) and do not seem to have a
physical realization.Comment: 7 pages, 1 figure, v2 minor revision
Determination of thermodynamic properties of AeroZINE-50, phase 1
Literature survey of, and test procedure for determination of thermodynamic properties of AeroZINE-5
Polyandrous females avoid costs of inbreeding
Why do females typically mate with more than one male? Female mating patterns have broad implications for sexual selection, speciation and conflicts of interest between the sexes, and yet they are poorly understood. Matings inevitably have costs, and for females, the benefits of taking more than one mate are rarely obvious. One possible explanation is that females gain benefits because they can avoid using sperm from genetically incompatible males, or invest less in the offspring of such males. It has been shown that mating with more than one male can increase offspring viability, but we present the first clear demonstration that this occurs because females with several mates avoid the negative effects of genetic incompatibility. We show that in crickets, the eggs of females that mate only with siblings have decreased hatching success. However, if females mate with both a sibling and a non-sibling they avoid altogether the low egg viability associated with sibling matings. If similar effects occur in other species, inbreeding avoidance may be important in understanding the prevalence of multiple mating
Percolation Crossing Formulas and Conformal Field Theory
Using conformal field theory, we derive several new crossing formulas at the
two-dimensional percolation point. High-precision simulation confirms these
results. Integrating them gives a unified derivation of Cardy's formula for the
horizontal crossing probability , Watts' formula for the
horizontal-vertical crossing probability , and Cardy's formula for
the expected number of clusters crossing horizontally . The
main step in our approach implies the identification of the derivative of one
primary operator with another. We present operator identities that support this
idea and suggest the presence of additional symmetry in conformal field
theories.Comment: 12 pages, 5 figures. Numerics improved; minor correction
Clustering Memes in Social Media
The increasing pervasiveness of social media creates new opportunities to
study human social behavior, while challenging our capability to analyze their
massive data streams. One of the emerging tasks is to distinguish between
different kinds of activities, for example engineered misinformation campaigns
versus spontaneous communication. Such detection problems require a formal
definition of meme, or unit of information that can spread from person to
person through the social network. Once a meme is identified, supervised
learning methods can be applied to classify different types of communication.
The appropriate granularity of a meme, however, is hardly captured from
existing entities such as tags and keywords. Here we present a framework for
the novel task of detecting memes by clustering messages from large streams of
social data. We evaluate various similarity measures that leverage content,
metadata, network features, and their combinations. We also explore the idea of
pre-clustering on the basis of existing entities. A systematic evaluation is
carried out using a manually curated dataset as ground truth. Our analysis
shows that pre-clustering and a combination of heterogeneous features yield the
best trade-off between number of clusters and their quality, demonstrating that
a simple combination based on pairwise maximization of similarity is as
effective as a non-trivial optimization of parameters. Our approach is fully
automatic, unsupervised, and scalable for real-time detection of memes in
streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM'13), 201
Single-shot single-gate RF spin readout in silicon
For solid-state spin qubits, single-gate RF readout can help minimise the
number of gates required for scale-up to many qubits since the readout sensor
can integrate into the existing gates required to manipulate the qubits
(Veldhorst 2017, Pakkiam 2018). However, a key requirement for a scalable
quantum computer is that we must be capable of resolving the qubit state within
single-shot, that is, a single measurement (DiVincenzo 2000). Here we
demonstrate single-gate, single-shot readout of a singlet-triplet spin state in
silicon, with an average readout fidelity of at a
measurement bandwidth. We use this technique to measure a triplet to
singlet relaxation time of in precision donor quantum
dots in silicon. We also show that the use of RF readout does not impact the
maximum readout time at zero detuning limited by the to decay,
which remained at approximately . This establishes single-gate
sensing as a viable readout method for spin qubits
In-plane Magnetic Field Dependent Magnetoresistance of Gated Asymmetric Double Quantum Wells
We have investigated experimentally the magnetoresistance of strongly
asymmetric double-wells. The structures were prepared by inserting a thin
AlGaAs barrier into the GaAs buffer layer of a standard
modulation-doped GaAs/AlGaAs heterostructure. The resulting
double-well system consists of a nearly rectangular well and of a triangular
well coupled by tunneling through the thin barrier. With a proper choice of the
barrier parameters one can control the occupancy of the two wells and of the
two lowest (bonding and antibonding) subbands. The electron properties can be
further influenced by applying front- or back-gate voltage.Comment: 4 pages, 5 figures, elsart/PHYEAUTH macros; to be presented on the
EP2DS-15 Conference in Nara, Japan. Revised version. To appear in Physica
Study of propellant valve leakage in a vacuum Final summary report
Adverse effects of liquid propellant leakage past control valves in vacuum environmen
Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors
Double-quantum-well field-effect transistors with a grating gate exhibit a sharply resonant, voltage tuned terahertz photoconductivity. The voltage tuned resonance is determined by the plasma oscillations of the composite structure. The resonant photoconductivity requires a double-quantum well but the mechanism whereby plasma oscillations produce changes in device conductance is not understood. The phenomenon is potentially important for fast, tunable terahertz detectors
- …