14 research outputs found
Locomotion disorders and skin and claw lesions in gestating sows housed in dynamic versus static groups
Lameness and lesions to the skin and claws of sows in group housing are commonly occurring indicators of reduced welfare. Typically, these problems are more common in group housing than in individual housing systems. Group management type (dynamic versus static) and stage of gestation influence the behavior of the animals, which in turn influences the occurrence of these problems. The present study compared prevalence, incidence and mean scores of lameness and skin and claw lesions in static versus dynamic group housed sows at different stages of gestation during three consecutive reproductive cycles. A total of 10 Belgian sow herds were monitored; 5 in which dynamic groups and 5 in which static groups were utilized. All sows were visually assessed for lameness and skin lesions three times per cycle and the claws of the hind limbs were assessed once per cycle. Lameness and claw lesions were assessed using visual analogue scales. Static groups, in comparison with dynamic groups, demonstrated lower lameness scores (P<0.05) and decreased skin lesion prevalence (24.9 vs. 47.3%, P<0.05) at the end of gestation. There was no difference between treatment group regarding claw lesion prevalence with 75.5% of sows demonstrating claw lesions regardless of group management. Prevalences of lameness (22.4 vs. 8.9%, P<0.05) and skin lesions (46.6 vs. 4.4%, P<0.05) were highest during the group-housed phase compared to the individually housed phases. Although the prevalence of lameness and skin lesions did not differ three days after grouping versus at the end of the group-housing phase, their incidence peaked during the first three days after moving from the insemination stalls to the group. In conclusion, the first three days after grouping was the most risky period for lameness incidence, but there was no significant difference between static or dynamic group management
Effect of variety, growing region and growing season on digestible energy content of wheats grown in Western Australia for weaner pigs
An experiment was conducted to examine the digestible energy (DE) content for weanling pigs in a cohort of wheats grown in Western Australia, and to establish relationships between DE content and their chemical composition. The 3 ✕ 3 ✕ 2 factorial experiment examined the wheat variety (Arrino, Stiletto and Westonia), growing location (high, medium and low rainfall zone) and harvest year (1999 and 2000). Pigs (no. = 5 per diet) aged about 28 days were given a diet at a level of 0·05 ✕ live weight containing 900 g/kg of the wheat and an acid-insoluble ash marker for 10 days, with samples of faeces collected from each pig for the final 5 days. The average live weight of pigs was 6·6 (s.d. 0·77) kg. The DE content of wheats harvested in 1999 varied by up to 1·3 MJ/kg, while wheats harvested in 2000 varied by up to 1·8 MJ/kg. When the 2 years’ data were combined, the DE content ranged from 12·5 to 14·4 MJ/kg. Both the variety and growing region significantly influenced (P \u3c 0·05, P \u3c 0·001, respectively in year 1999; P \u3c 0·001, P \u3c 0·01, respectively in year 2000) the DE content of wheat. Also, DE content of wheat differed significantly due to growing season (P \u3c 0·001). Correlation studies between chemical composition and DE content of the wheats found significant inverse relationships between DE content and total xylose (r = –0·719, P \u3c 0·05), insoluble xylose (r = –0·742, P \u3c 0·05), neutral-detergent fibre (r = –0·839, P \u3c 0·01), total-P (r = –0·833, P \u3c 0·01), and phytate-P (r = –0·753, P \u3c 0·05) contents with the wheats harvested in 1999. However, such relationships were not significant (P \u3e 0·05) with the wheats harvested in 2000. In addition, the precipitation level (mm) during the growing season of wheats was strongly correlated (r = –0·821, P \u3c 0·01) to the DE content of wheat in year 1999, but was not correlated in 2000. The results indicate that the genetic and environmental conditions during the growth of wheat have a significant impact on the utilization of plant energy in weaner pigs, and that greater attention needs to be paid to these influences in the assignment of energy values for wheats given to weaner pigs