111 research outputs found

    Pathophysiology of melanocortin receptors and their accessory proteins.

    Get PDF
    The melanocortin receptors (MCRs) and their accessory proteins (MRAPs) are involved in regulation of a diverse range of endocrine pathways. Genetic variants of these components result in phenotypic variation and disease. The MC1R is expressed in skin and variants in the MC1R gene are associated with ginger hair color. The MC2R mediates the action of ACTH in the adrenal gland to stimulate glucocorticoid production and MC2R mutations result in familial glucocorticoid deficiency (FGD). MC3R and MC4R are involved in metabolic regulation and their gene variants are associated with severe pediatric obesity, whereas the function of MC5R remains to be fully elucidated. MRAPs have been shown to modulate the function of MCRs and genetic variants in MRAPs are associated with diseases including FGD type 2 and potentially early onset obesity. This review provides an insight into recent advances in MCRs and MRAPs physiology, focusing on the disorders associated with their dysfunction

    Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of <it>β</it>-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the <it>β</it>-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs.</p> <p>Results</p> <p>We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on <it>β</it>-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and <it>β</it>-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the <it>β</it>-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a <it>β</it>-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive.</p> <p>Conclusions</p> <p>Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are <it>β</it>-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.</p

    LIF-Dependent Signaling: New Pieces in the Lego

    Get PDF
    LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine

    Impact of intracellular ion channels on cancer development and progression

    Get PDF

    Synthesis of 2,3-diaryl-1,4-diazolyl-2,3-epoxybutanes

    No full text
    corecore