38 research outputs found
A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest
Influence of handaxe size and shape on cutting efficiency: a large-scale experiment and morphometric analysis
Handaxes represent one of the most temporally enduring and geographically widespread of Palaeolithic artifacts and thus comprised a key technological strategy of many hominin populations. Archaeologically observable variation in the size (i.e., mass) and shape properties of handaxes has been frequently noted. It is logical to ask whether some of this variability may have had functional implications. Here, we report the results of a large-scale (n = 500 handaxes) experiment designed to examine the influence of variation in handaxe size and shape on cutting efficiency rates during a laboratory task. We used a comprehensive dataset of morphometric (size-adjusted) shape variables and statistical methods (including multivariate methods) to address this issue. Our first set of analyses focused on handaxe mass/size variability. This analysis demonstrated that, at a broad-scale level of variation, handaxe mass may have been free to vary independently of functional (cutting) efficiency. Our analysis also, however, identified that there will be a task-specific threshold in terms of functional effectiveness at the lower end of handaxe mass variation. This implies that hominins may have targeted design forms to meet minimal (task-specific) thresholds, and may also have managed handaxe reduction and discard in respect to such factors. Our second set of analyses focused on handaxe shape variability. This analysis also indicated that considerable variation in handaxe shape may occur independently of any strong effect on cutting efficiency. We discuss how these results have several implications for considerations of handaxe variation in the archaeological record. At a general level, our results demonstrate that variability within and between handaxe assemblages in terms of their size and shape properties will not necessarily have had immediate or strong impact on their effectiveness when used for cutting, and that such variability may have been related to factors other than functional issues
Limiting the level of tertiary amines on polyamines leads to biocompatible nucleic acid vectors
PublishedThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.We have designed an efficient, synthetic nucleic acid vector, which is relatively non-toxic. [N-(2-ethylamino)-6-O-glycolchitosan − EAGC] polymers were 10 − 50 fold less toxic than Lipofectamine 2000, able to complex DNA, mRNA and siRNA into positively charged (zeta potential = + 40 − 50 mV), 50–450 nm nanoparticles. The level of tertiary amine N-2-ethylamino substitution (DStert) was inversely proportional to the IC50 of the EAGC polymers in the A431 cell line: IC50 = 6.18 DStert−0.9, r2 = 0.9991. EAGC polyplexes were stable against a heparin challenge, able to protect the nucleic acids from nuclease degradation and achieve levels of transfection comparable to Lipofectamine 2000 formulations. The relative biocompatibility of the vector allowed 10 fold higher doses of DNA (1 μg compared to 0.1 μg per well with Lipofectamine 2000) and siRNA (10.7 μg per well vs 1.3 μg with Lipofectamine 2000) to be applied to cells, when compared to Lipofectamine 2000. Finally intranasal application of EAGC − siRNA complexes resulted in siRNA transfer to the neurons of the olfactory bulb.Funding is acknowledged from the following organisations: University College London and Nanomerics Ltd