15 research outputs found
Synthesis, multiscale-multiphase characterization and applications of thiophene-based biohybrids
Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported.
The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state.
To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates.
Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches.
Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role
Characterization of milk protein based nano-carriers: interaction with polyphenolic molecules of nutraceutical interest.
Characterization of milk protein based nano-carriers: interaction with polyphenolic molecules of nutraceutical interest
A New Intronic Variant in ECEL1 in Two Patients with Distal Arthrogryposis Type 5D
Distal Arthrogryposis type 5D (DA5D) is characterized by congenital contractures involving the distal joints, short stature, scoliosis, ptosis, astigmatism, and dysmorphic features. It is inherited in an autosomal recessive manner, and it is a result of homozygous or compound heterozygous variants in the ECEL1 gene. Here, we report two patients of Sardinian origin harboring a new intronic homozygous variant in ECEL1 (c.1507-9G>A), which was predicted to affect mRNA splicing by activating a cryptic acceptor site. The frequency of the variant is very low in the general human population, and its presence in our families can be attributed to a founder effect. This study provides an updated review of the known causative mutations of the ECEL1 gene, enriching the allelic spectrum to include the noncoding sequence
LTBP2-related “Marfan-like” phenotype in two Roma/Gypsy subjects with the LTBP2 homozygous p.R299X variant
Recessive variants in LTBP2 are associated with eye-restricted phenotypes including (a) primary congenital glaucoma and (b) microspherophakia/megalocornea and ectopia lentis with/without secondary glaucoma. Nosology of LTBP2 pathology in humans is apparently in contrast with the consolidated evidence of a wide expression of this gene in the developing embryo. Accordingly, in previously published patients with LTBP2-related eye disease, additional extraocular findings have been occasionally reported and include, among others, high-arched palate, tall stature, and variable cardiac involvement. Anyway, no emphasis was put on such systemic manifestations. Here, we report two unrelated Roma/Gypsy patients first ascertained for a multisystem disorder mainly characterized by primary congenital glaucoma, complex congenital heart defect, tall stature, long fingers, skin striae and dystrophic scarring, and resembling Marfan syndrome. Heart involvement was severe with polyvalvular heart dysplasia in one, and transposition of great arteries, thoracic arterial tortuosity, polyvalvular heart dysplasia, and neo-aortic root dilatation in the other. Both patients were homozygous for the recurrent c.895C>T[p.(R299X)] variant, typically found in individuals of Roma/Gypsy descent with an eye-restricted phenotype. Our findings point out LTBP2 as responsible of a systemic phenotype coherent with the community of syndromes related to anomalies in genes involved in the TGFβ-pathway. Among these disorders, LTBP2-related systemic disease emerges as a distinct condition with expanding prognostic implications and autosomal recessive inheritance
Self-Organization, Optical, and Electrical Properties of -Quinquethiophene-Dinucleotide Conjugates
The synthesis and properties of (5')TA(3')-t5 (8a) and (5')CG(3')-t5 (8b) conjugates, in which the self-complementary dinucleotides TA and CG are covalently bound to the central ring of alpha-quinquethiophene (t5), are described. According to molecular mechanics calculations, the preferred conformation of both 8 a and 8b is that with the dinucleotide folded over the planar t5 backbone, with the nucleobases facing t5 at stacking distance. The calculations show that the aggregation process of 8 a and 8b is driven by a mix of nucleobase-thiophene interactions, hydrogen bonding between nucleobases (non Watson-Crick (W&C) in TA, and W&C in CG), van der Waals, and electrostatic interactions. While 8b is scarcely soluble in any solvents, 8a is soluble in water, indicating that the aggregates of the former are more stable than those of the latter. Microfluidic-induced self-assembly studies of 8a showed the formation of lamellar, spherulitic, and dendritic supramolecular structures, depending on the concentration and solvent evaporation time. The self-assembled structures displayed micrometer dimensions in the. v plane of the substrate and nanometer dimensions in the z direction. Spatially resolved confocal microscopy and spectroscopy showed that the aggregates were characterized by intense fluorescence emission. Cast films of 8a from water solutions showed chirality transfer from the dinucleotide to t5. The hole mobility of the cast films of 8a was estimated using a two-electrode device under high vacuum and found to be up to two orders of magnitude greater than those previously measured for dinucleotide-quarterthiophene conjugates under the same experimental conditions
A Complex Genomic Rearrangement Resulting in Loss of Function of SCN1A and SCN2A in a Patient with Severe Developmental and Epileptic Encephalopathy
Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient’s phenotype resulted from the concomitant loss of function of SCN1A and SCN2A
Homozygous HESX1 and COL1A1 Gene Variants in a Boy with Growth Hormone Deficiency and Early Onset Osteoporosis
We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis
Homozygous <i>HESX1</i> and <i>COL1A1</i> Gene Variants in a Boy with Growth Hormone Deficiency and Early Onset Osteoporosis
We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis
1p36 Deletion Syndrome and the Aorta: A Report of Three New Patients and a Literature Review
Background: Monosomy 1p36 syndrome is now considered the most common terminal deletion syndrome, with an estimated incidence of 1 in 5000. Cardiac involvement is well described in the literature mainly in terms of congenital heart defects (CHDs) and cardiomyopathies (CMPs). Few data in the literature describe the potential progressive nature of aortic dilatation (root and ascending aorta) in 1p36 deletion syndrome. SKI harboured in the deleted region might play a predisposing factor for this aspect. Methods: we reviewed the aortic aspect both in the literature and in our cohort, where major attention to the aortic abnormalities was given through dedicated echocardiographic measurements even in previously screened individuals. Results: aortic involvement in 1p36 deletion syndrome was described in the literature three times within the CHD context. We observed three additional patients from our cohort (three out of nine patients) with aortic dilatation. All patients with dilated aorta had SKI haploinsufficiency within the deleted region. Conclusions: at long-term outcome and with a growing population of this rare disease, this association (1p36 deletion and aortic dilatation) might represent a major concern especially in terms of risk stratification and the potential need for specific management (conservative pharmacologic and eventually surgical) whenever indicated. The present study suggests the need for detailed multicentric studies and indication to periodic echocardiographic screening in addition to baseline tests, especially in individuals with deletions harbouring SKI