7,161 research outputs found

    Chemical control of loopers in Stanley Park, Vancouver

    Get PDF
    n/

    Notes on the chemical control of Ectropis crepuscularia Schiff, at Kitimat, B.C.

    Get PDF
    n/

    Cathodoluminescence studies of phosphors in a scanning electron microscope

    Get PDF
    Cathodoluminescence studies are reported of phosphors in a field emission scanning electron microscope (FESEM). A number of phosphor materials have been studied and exhibited a pronounced comet-like structure at high scan rates, because the particle continued to emit light after the beam had moved onto subsequent pixels. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. This technique provides a simple and convenient way to study the decay times of individual particles

    SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries

    Full text link
    The ultracompact binary systems V407 Vul (RX J1914.4+2456) and HM Cnc (RX J0806.3+1527) - a two-member subclass of the AM CVn stars - continue to pique interest because they defy unambiguous classification. Three proposed models remain viable at this time, but none of the three is significantly more compelling than the remaining two, and all three can satisfy the observational constraints if parameters in the models are tuned. One of the three proposed models is the direct impact model of Marsh & Steeghs (2002), in which the accretion stream impacts the surface of a rapidly-rotating primary white dwarf directly but at a near-glancing angle. One requirement of this model is that the accretion stream have a high enough density to advect its specific kinetic energy below the photosphere for progressively more-thermalized emission downstream, a constraint that requires an accretion spot size of roughly 1.2x10^5 km^2 or smaller. Having at hand a smoothed particle hydrodynamics code optimized for cataclysmic variable accretion disk simulations, it was relatively straightforward for us to adapt it to calculate the footprint of the accretion stream at the nominal radius of the primary white dwarf, and thus to test this constraint of the direct impact model. We find that the mass flux at the impact spot can be approximated by a bivariate Gaussian with standard deviation \sigma_{\phi} = 164 km in the orbital plane and \sigma_{\theta} = 23 km in the perpendicular direction. The area of the the 2\sigma ellipse into which 86% of the mass flux occurs is roughly 47,400 km^2, or roughly half the size estimated by Marsh & Steeghs (2002). We discuss the necessary parameters of a simple model of the luminosity distribution in the post-impact emission region.Comment: 24 pages, 5 figures, Accepted for publication in Ap

    Lower Cretaceous Pre-Batholithic Rocks of Northern Baja California, Mexico

    Get PDF
    Cretaceous fossils have been found at scattered localities in the pre-batholithic metamorphic rocks of northern Baja California by investigators during the past half-century. The resulting information has been inadequate, however, for the explanation of regional stratigraphic and structural relations, particularly those correlations between the less metamorphosed coastal sections and the more deformed rocks of the mountainous interior

    Chemical control of loopers in Stanley Park, Vancouver

    Get PDF
    n/

    Analysis of Deformation Data at Parkfield, California: Detection of a Long-Term Strain Transient

    Get PDF
    Analysis of more than a decade of high-quality data, particularly those from the two-color electronic distance meter (EDM), in the Parkfield, California, area reveals a significant transient in slip rate along the San Andreas Fault. This transient consists of an increase in fault slip rate of 3.3 ± 0.9 mm/yr during 1993.0 to 1998.0. The most reliable fault creep instruments show a comparable increase in slip rate, suggesting that the deformation is localized to the fault which breaks the surface. There was also an increase in precipitation around 1993. It is unlikely, however, that this anomaly is due directly to hydrology, as its spatial distribution is what would be expected for increased slip on the San Andreas Fault. The increase in slip rate corresponds temporally to a dramatic increase in seismicity, including the four largest earthquakes in the period 1984-1999 that occurred along a 6-km segment of the fault just to the north of the EDM network. There was also a previously reported anomaly in borehole shear strain [Gwyther et al., 1996] that closely corresponds temporally to the transient in EDM data. Solely on the basis of EDM data the transient can be modeled as a slip event on a 10-km-long segment of the fault. The calculated shear strains from this model, however, are not consistent with the observed ones. A compatible model can be found if there is increased aseismic slip to the northwest in conjunction with the four earthquakes. Support for this northwestern slip is provided by a recent study of slip rate based on microearthquake activity. We speculate that this northwestern event served to load the fault to the southeast, with the stress being partially released by the observed slip

    The green-striped forest looper on Vancouver Island

    Get PDF
    n/

    Photoluminescence Study of Symmetry-Related Transitions in the Spectrum of Y2O3:Tb3+

    Get PDF
    Herein we describe the results of a study on the photoluminescence of cubic nanosized Y2O3:Tb3+. These results confirm our earlier conclusions based on cathodoluminescence about the energy flow from excited Tb3+ in a S6 lattice site to Tb3+ in a C2 sit

    Fe XVII X-ray Line Ratios for Accurate Astrophysical Plasma Diagnostics

    Full text link
    New laboratory measurements using an Electron Beam Ion Trap (EBIT) and an x-ray microcalorimeter are presented for the n=3 to n=2 Fe XVII emission lines in the 15 {\AA} to 17 {\AA} range, along with new theoretical predictions for a variety of electron energy distributions. This work improves upon our earlier work on these lines by providing measurements at more electron impact energies (seven values from 846 to 1185 eV), performing an in situ determination of the x-ray window transmission, taking steps to minimize the ion impurity concentrations, correcting the electron energies for space charge shifts, and estimating the residual electron energy uncertainties. The results for the 3C/3D and 3s/3C line ratios are generally in agreement with the closest theory to within 10%, and in agreement with previous measurements from an independent group to within 20%. Better consistency between the two experimental groups is obtained at the lowest electron energies by using theory to interpolate, taking into account the significantly different electron energy distributions. Evidence for resonance collision effects in the spectra is discussed. Renormalized values for the absolute cross sections of the 3C and 3D lines are obtained by combining previously published results, and shown to be in agreement with the predictions of converged R-matrix theory. This work establishes consistency between results from independent laboratories and improves the reliability of these lines for astrophysical diagnostics. Factors that should be taken into account for accurate diagnostics are discussed, including electron energy distribution, polarization, absorption/scattering, and line blends.Comment: 29 pages, including 7 figure
    corecore