19 research outputs found

    Comparison of the reliability of multifocal visual evoked cortical potentials generated by pattern reversal and pattern pulse stimulation

    Get PDF
    This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols

    The Spatial Properties of L- and M-Cone Inputs to Electroretinograms That Reflect Different Types of Post-Receptoral Processing

    Get PDF
    yesWe studied the spatial arrangement of L- and M-cone driven electroretinograms (ERGs) reflecting the activity of magno- and parvocellular pathways. L- and M-cone isolating sine wave stimuli were created with a four primary LED stimulator using triple silent substitution paradigms. Temporal frequencies were 8 and 12 Hz, to reflect cone opponent activity, and 30, 36 and 48 Hz to reflect luminance activity. The responses were measured for full-field stimuli and for different circular and annular stimuli. The ERG data confirm the presence of two different mechanisms at intermediate and high temporal frequencies. The responses measured at high temporal frequencies strongly depended upon spatial stimulus configuration. In the full-field conditions, the L-cone driven responses were substantially larger than the full-field M-cone driven responses and also than the L-cone driven responses with smaller stimuli. The M-cone driven responses at full-field and with 70° diameter stimuli displayed similar amplitudes. The L- and M-cone driven responses measured at 8 and 12 Hz were of similar amplitude and approximately in counter-phase. The amplitudes were constant for most stimulus configurations. The results indicate that, when the ERG reflects luminance activity, it is positively correlated with stimulus size. Beyond 35° retinal eccentricity, the retina mainly contains L-cones. Small stimuli are sufficient to obtain maximal ERGs at low temporal frequencies where the ERGs are also sensitive to cone-opponent processin

    The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina

    No full text
    The projection from the retina to the dorsal lateral geniculate nucleus in the primate arises from two morphologically distinct types of ganglion cells. The P-ganglion cells project to the parvocellular layers, the M-ganglion cells to the magnocellular layers. We have developed a neurofibrillar stain which stains the M-ganglion cell population with a high degree of selectivity allowing us to map their distribution across the retina. As with other ganglion cell types the M-ganglion cell density peaks close to the fovea and declines towards the periphery. At 1 mm from the fovea the proportion of M-ganglion cells ranges from 6 to 10% and then increases to about 8-10% over much of the retina except along the nasal horizontal meridian. Along the nasal horizontal meridian the percentage increases from 10% at 7 mm eccentricity to 20% or more at higher eccentricities. The increased percentage of M-ganglion cells in the nasal quadrant of the retina correlates with the relatively smaller dendritic trees of M-ganglion cells in this region.</p

    The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, <i>Aotus trivirgatus</i>

    No full text
    The distribution of ganglion cells and displaced amacrine cells was determined in whole-mounted Aotus retinae. In contrast to diurnal simians, Aotus has only a rudimentary fovea. Ganglion cell density decreases towards the periphery at approximately the same rate along all meridians, but is 1.2-1.8 times higher in the nasal periphery when compared to temporal region at the same eccentricities. The total number of ganglion cells varied from 421,500 to 508,700. Ganglion cell density peaked at 15,000/mm2at 0.25 mm dorsal to the fovea. The displaced amacrine cells have a shallow density gradient, their peak density in the central region is about 1500-2000/mm2 and their total number varied from 315,900 to 482,800. Comparison between ganglion cell density and areal cortical magnification factor for the primary visual cortex, area 17, shows that there is not a simple proportional representation of the ganglion cell distribution. There is an overrepresentation of the central 10 deg of the visual field in the visual cortex. The present results for Aotus and the results of a similar analysis of data from other primates indicate that the overrepresentation of the central visual field is a general feature of the visual system of primates.</p

    The ganglion cell response to optic nerve injury in the cat: differential responses revealed by neurofibrillar staining

    No full text
    The early responses of cat retinal ganglion cells to axotomy have been examined using neurofibrillar and Nissl-stained wholemounts. We were interested to learn whether the enhanced neurofilament expression, seen in a number of neuronal systems, was also present in different neuronal populations of the cat retina and could be used to study the distribution of these cells. We found that beta ganglion cells degenerate very rapidly after axotomy with the nuclei becoming pyknotic within a few days. Few beta cells showed increased neurofibrillar staining of the dendrites. The cell body degenerated prior to any visible degenerative changes in the axon. A proportion of the alpha and gamma ganglion cells degenerated in the first two to three weeks after axotomy. The alpha cells underwent markedly enhanced neurofibrillar staining of their dendrites prior to degeneration. The Nissl material of the cell bodies diminished as the cells degenerated but we have not observed pyknotic nuclei. The dendritic trees of some axotomised gamma cells were also revealed by the neurofibrillar stain three weeks after axotomy. These results show that retinal ganglion cells do not degenerate by a dying back process. We suggest that the rapid degeneration of the beta ganglion cell population comes about by excitotoxic cell death, a consequence of their large glutamatergic input from bipolar cells. The degenerating beta ganglion cells have the morphological appearance of cells undergoing apoptosis.</p
    corecore