44 research outputs found

    Aliskiren, a renin inhibitor, downregulates TNF-α-induced tissue factor expression in HUVECS

    Get PDF
    Angiotensin (Ang)II, the effector arm of the locally active renin—angiotensin system (RAS), modulates Tissue Factor (TF), the principal initiator of blood coagulation and a key promoter of atherothrombotic events. Consistent with that knowledge, previous data showed inhibitory properties of angiotensin-converting enzyme inhibitor (ACEI)s and angiotensin II type-1 receptor blocker (ARB)s, but no data are available about the effect of renin inhibition. We aimed to evaluate whether aliskiren, a direct renin inhibitor (DRI), modulates TNF-α-stimulated TF expression in cultured human umbilical vein endothelial cells (HUVECs). Zofenopril, an ACEI, and olmesartan, an ARB, were the controls. HUVECs were incubated with experimental drugs (1 nM) 30 min prior to TNF-α stimulation (0.1 ng/ml × 4 h). Main evaluation variables were procoagulant activity (single-stage clotting assay), TF antigen (ELISA) and mRNA expression (real-time polymerase chain reaction) in cell lysates. TNF-α stimulated procoagulant activity and increased TF antigen and mRNA expression. Aliskiren inhibited TNF-α-mediated TF stimulation; zofenopril and olmesartan exerted a comparable effect. We conclude that aliskiren, a DRI, downregulates TNF-α-stimulated TF expression in HUVECs, possibly as a reflection of endothelial renin activation by the cytokine

    The effect of angiotensin receptor blockers on C-reactive protein and other circulating inflammatory indices in man

    Get PDF
    Anti-inflammatory properties may contribute to the pharmacological effects of angiotensin II receptor blockers (ARBs), a leading therapeutic class in the management of hypertension and related cardiovascular and renal diseases. That possibility, supported by consistent evidence from in-vitro and animal studies showing pro-inflammatory properties of angiotensin II, has been evaluated clinically by measuring the effect of ARBs on C-reactive protein and other circulating indices of inflammation (e-selectin, adhesion molecules, interleukin-6, tissue necrosis factor-alpha, monocyte chemoattractant protein-1) of potential clinical relevance, a body of evidence that this paper aims to review

    Monocytes/macrophages activation contributes to b-gamma-glutamyltransferase accumulation inside atherosclerotic plaques

    Get PDF
    Gamma-glutamyltransferase (GGT) is a well-established independent risk factor for cardiovascular mortality related to atherosclerotic disease. Four GGT fractions have been identified in plasma, but only b-GGT fraction accumulates in atherosclerotic plaques, and correlates with other histological markers of vulnerability. The present study was aimed to evaluate whether macrophagic lineage cells may provide a source of b-GGT within the atherosclerotic plaque

    The effect of high glucose on the inhibitory action of C21, a selective AT2R agonist, of LPS-stimulated tissue factor expression in human mononuclear cells

    Get PDF
    Background: Intimate links connect tissue factor (TF), the principal initiator of the clotting cascade, to inflammation, a cross-talk amplified by locally generated Angiotensin (AT) II, the effector arm of the Renin Angiotensin System (RAS). C21, a selective AT2R agonist, downregulates the transcriptional expression of TF in LPS-activated peripheral blood mononuclear cell(PBMC)s implying the existence of ATII type 2 receptor (AT2R)s whose stimulation attenuates inflammation-mediated procoagulant responses. High glucose, by activating key signalling pathways and increasing the cellular content of RAS components, augments TF expression and potentiates the inhibitory effect of AT1R antagonists. It is unknown, however, the impact of that stimulus on AT2R-mediated TF inhibition, an information useful to understand more precisely the role of that signal transduction pathway in the inflammation-mediated coagulation process. TF antigen (ELISA), procoagulant activity (PCA, 1-stage clotting assay) and TF-mRNA (real-time polymerase chain reaction) were assessed in PBMCs activated by LPS, a pro-inflammatory and procoagulant stimulus, exposed to either normal (N) or HG concentrations (5.5 and 50 mM respectively). Results: HG upregulated TF expression, an effect abolished by BAY 11-7082, a NFκB inhibitor. C21 inhibited LPS-stimulated PCA, TFAg and mRNA to an extent independent of glucose concentration but the response to Olmesartan, an AT1R antagonist, was quite evidently potentiated by HG. Conclusions: HG stimulates LPS-induced TF expression through mechanisms completely dependent upon NFkB activation. Both AT2R-stimulation and AT1R-blockade downregulate inflammation-mediated procoagulant response in PBMCs but HG impacts differently on the two different signal transduction pathway

    Non enzymatic upregulation of tissue factor expression by gamma-glutamyl transferase in human peripheral blood mononuclear cells

    Get PDF
    Background Besides maintaining intracellular glutathione stores, gamma-glutamyltransferase(GGT) generates reactive oxygen species and activates NFkB, a redox-sensitive transcription factor key in the induction of Tissue Factor (TF) gene expression, the principal initiator of the clotting cascade. Thus, GGT might be involved in TF-mediated coagulation processes, an assumption untested insofar. Methods Experiments were run with either equine, enzymatically active GGT or human recombinant (hr) GGT, a wheat germ-derived protein enzymatically inert because of missing post-translational glycosylation. TF Procoagulant Activity (PCA, one-stage clotting assay), TF antigen(ELISA) and TFmRNA(real-time PCR) were assessed in unpooled human peripheral blood mononuclear cell(PBMC) suspensions obtained from healthy donors through discontinuous Ficoll/Hystopaque density gradient. Results Equine GGT increased PCA, an effect insensitive to GGT inhibition by acivicin suggesting mechanisms independent of its enzymatic activity, a possibility confirmed by the maintained stimulation in response to hrGGT, an enzymatically inactive molecule. Endotoxin(LPS) contamination of GGT preparations was excluded by heat inactivation studies and direct determination(LAL method) of LPS concentrations <0.1 ng/mL practically devoid of procoagulant effect. Inhibition by anti-GGT antibodies corroborated that conclusion. Upregulation by hrGGT of TF antigen and mRNA and its downregulation by BAY-11-7082, a NFkB inhibitor, and N-acetyl-L-cysteine, an antioxidant, was consistent with a NFkB-driven, redox-sensitive transcriptional site of action. Conclusions GGT upregulates TF expression independent of its enzymatic activity, a cytokine-like behaviour mediated by NFκB activation, a mechanism contributing to promote acute thrombotic events, a possibility in need, however, of further evaluation

    Induced sputum is a reproducible method to assess airway inflammation in asthma.

    Get PDF
    To evaluate the reproducibility of induced sputum analysis, and to estimate the sample size required to obtained reliable results, sputum was induced by hypertonic saline inhalation in 29 asthmatic subjects on two different days. The whole sample method was used for analysis, and inflammatory cells were counted on cytospin slides. Reproducibility, expressed by intra-class correlation coefficients, was good for macrophages (+0.80), neutrophils (+0.85), and eosinophils (+0.87), but not for lymphocytes (+0.15). Detectable differences were 5.5% for macrophages, 0.6% for lymphocytes, 5.2% for neutrophils, and 3.0% for eosinophils. We conclude that analysis of induced sputum is a reproducible method to study airway inflammation in asthma. Sample sizes greater than ours give little improvement in the detectable difference of eosinophil percentages

    Induced sputum is a reproducible method to assess airway inflammation in asthma

    Get PDF
    TO evaluate the reproducibility of induced sputum analysis, and to estimate the sample size required to obtained reliable results, sputum was induced by hypertonic saline inhalation in 29 asthmatic subjects on two different days. The whole sample method was used for analysis, and inflammatory cells were counted on cytospin slides. Reproducibility, expressed by intra-class correlation coefficients, was good for macrophages (+0.80), neutrophils (+0.85), and eosinophils (+0.87), but not for lymphocytes (+0.15). Detectable differences were 5.5% for macrophages, 0.6% for lymphocytes, 5.2% for neutrophils, and 3.0% for eosinophils. We conclude that analysis of induced sputum is a reproducible method to study airway inflammation in asthma. Sample sizes greater than ours give little improvement in the detectable difference of eosinophil percentages

    Contribution by Polymorphonucleate Granulocytes to Elevated Gamma-Glutamyltransferase in Cystic Fibrosis Sputum

    Get PDF
    Background: Cystic fibrosis (CF) is an autosomal recessive disorder characterized by a chronic neutrophilic airways inflammation, increasing levels of oxidative stress and reduced levels of antioxidants such as glutathione (GSH). Gammaglutamyltransferase (GGT), an enzyme induced by oxidative stress and involved in the catabolism of GSH and its derivatives, is increased in the airways of CF patients with inflammation, but the possible implications of its increase have not yet been investigated in detail. Principal Findings: The present study was aimed to evaluate the origin and the biochemical characteristics of the GGT detectable in CF sputum. We found GGT activity both in neutrophils and in the fluid, the latter significantly correlating with myeloperoxidase expression. In neutrophils, GGT was associated with intracellular granules. In the fluid, gel-filtration chromatography showed the presence of two distinct GGT fractions, the first corresponding to the human plasma b-GGT fraction, the other to the free enzyme. The same fractions were also observed in the supernatant of ionomycin and fMLPactivated neutrophils. Western blot analysis confirmed the presence of a single band of GGT immunoreactive peptide in the CF sputum samples and in isolated neutrophils. Conclusions: In conclusion, our data indicate that neutrophils are able to transport and release GGT, thus increasing GGT activity in CF sputum. The prompt release of GGT may have consequences on all GGT substrates, including major inflammatory mediators such as S-nitrosoglutathione and leukotrienes, and could participate in early modulation of inflammatory response

    Anti-inflammatory and anti-oxidant properties of telmisartan in cultured human umbilical vein endothelial cells RID A-8520-2011 RID C-3880-2009

    No full text
    Purpose: To study whether telmisartan, an angiotensin II (AII) receptor blocker (ARB), modulates endothelial inflammation and oxidative cell damage induced by AII-independent stimuli in cultured human umbilical vein endothelial cell (HUVEC)s. Methods: Endothelial inflammation, as reflected by increased VCAM-1 and ICAM-1 expression (ELISA), was induced by TNF-alpha, an inflammatory cytokine, and cell damage (COMET and MTT assay) by hydrogen peroxide, a reactive oxygen species. Losartan, another ARB, its active metabolites (EXP-3174, EXP-3179), dexamethasone, a synthetic steroid, and pyrrolidine dithiocarbamate (PDTC), an anti-oxidant, were the controls. The contribution of PPAR-gamma agonism was assessed through synthetic PPAR-gamma agonists and antagonists and the antagonism for All-type 1 receptor-mediated stimuli by evaluating the interference against cell death induced by AII (MTT assay), a pro-apoptotic peptide that induces oxidative stress. The in vitro scavenging properties for oxyradicals were quantified by the TOSC assay. Results: Telmisartan and PDTC reduced TNF-alpha-stimulated VCAM-1 in a concentration-dependent manner while losartan, EXP-3174, EXP-3179 and dexamethasone were ineffective. All compounds did not modify ICAM-1 expression. PPAR-gamma agonists or antagonists did not interfere with the effect of telmisartan. Both ARBs antagonized AII-induced cell death but only telmisartan reduced hydrogen peroxide-induced cell damage. Telmisartan scavenged selectively hydroxyl radicals without affecting peroxyl radicals and peroxynitrite. Conclusions: Telmisartan modulates pleiotropically TNF-alpha induced VCAM-1 expression and oxidative damage in vascular endothelium, possibly by acting as a hydroxyl radical scavenger. Those anti-inflammatory and antioxidant properties may contribute to the therapeutic effect, although the applicability of these data to the clinical situations has to be verified. (c) 2007 Elsevier Ireland Ltd. All rights reserved
    corecore