566 research outputs found
Substantial Antigenic Drift in the Hemagglutinin Protein of Swine Influenza A Viruses
The degree of antigenic drift in swine influenza A viruses (swIAV) has historically been regarded as minimal compared to that of human influenza A virus strains. However, as surveillance activities on swIAV have increased, more isolates have been characterized, revealing a high level of genetic and antigenic differences even within the same swIAV lineage. The objective of this study was to investigate the level of genetic drift in one enzootically infected swine herd over one year. Nasal swabs were collected monthly from sows (n = 4) and piglets (n = 40) in the farrowing unit, and from weaners (n = 20) in the nursery. Virus from 1–4 animals were sequenced per month. Analyses of the sequences revealed that the hemagglutinin (HA) gene was the main target for genetic drift with a substitution rate of 7.6 × 10−3 substitutions/site/year and evidence of positive selection. The majority of the mutations occurred in the globular head of the HA protein and in antigenic sites. The phylogenetic tree of the HA sequences displayed a pectinate typology, where only a single lineage persists and forms the ancestor for subsequent lineages. This was most likely caused by repeated selection of a single immune-escape variant, which subsequently became the founder of the next wave of infections
Multimodal Virtual Reality-Based Assessment of Adult ADHD : A Feasibility Study in Healthy Subjects
Neuropsychological assessments are often surprisingly inaccurate in mapping clinically-reported attention-deficit hyperactivity disorder (ADHD) symptoms, presumably due to their low ecological validity. Virtual reality (VR) might offer a potential solution for this problem, given its capability to generate standardized and yet highly realistic virtual environments. As the first adaptation of existing virtual classroom scenarios to an adult population, we developed a Virtual Seminar Room (VSR) for multimodal characterization of ADHD symptoms. To test its feasibility, N= 35 healthy participants were immersed into the VSR via a head-mounted display and carried out a VR-embedded continuous performance task (CPT) under varying levels of distractions in two experimental blocks (24 min each). CPT performance, electroencephalography (EEG) measures, and head movements (actigraphy) were simultaneously recorded and analyzed offline. Although CPT performance remained constant throughout the task, head movements increased significantly from Block 1 to Block 2. In addition, EEG theta (4–7 Hz) and beta (13–30 Hz) power was higher during Block 1 than Block 2, and during distractor-present than distractor-absent phases. Moreover, P300 amplitudes were higher during Block 1 than Block 2, and P300 latencies were prolonged in distractor-absent compared with distractor-present phases. Although the paradigm awaits further improvements, this study confirms the general feasibility of the VSR and provides a first step toward a multimodal, ecologically valid, and reliable VR-based adult ADHD assessment
MUG CCArly: a novel autologous 3D cholangiocarcinoma model presents an increased angiogenic potential
Cholangiocarcinoma (CCA) are characterized by their desmoplastic and hypervascularized tumor microenvironment (TME), which is mainly composed of tumor cells and cancer-associated fibroblasts (CAFs). CAFs play a pivotal role in general and CCA tumor progression, angiogenesis, metastasis, and the development of treatment resistance. To our knowledge, no continuous human in vivo-like co-culture model is available for research. Therefore, we aimed to establish a new model system (called MUG CCArly) that mimics the desmoplastic microenvironment typically seen in CCA. Proteomic data comparing the new CCA tumor cell line with our co-culture tumor model (CCTM) indicated a higher gene expression correlation of the CCTM with physiological CCA characteristics. A pro-angiogenic TME that is typically observed in CCA could also be better simulated in the CCTM group. Further analysis of secreted proteins revealed CAFs to be the main source of these angiogenic factors. Our CCTM MUG CCArly represents a new, reproducible, and easy-to-handle 3D CCA model for preclinical studies focusing on CCA-stromal crosstalk, tumor angiogenesis, and invasion, as well as the immunosuppressive microenvironment and the involvement of CAFs in the way that drug resistance develops
Inhibiting Lysine Demethylase 1A Improves L1CAM-Specific CAR T Cell Therapy by Unleashing Antigen-Independent Killing via the FAS-FASL Axis
Simple Summary: Solid tumor cells can lose or heterogeneously express antigens to become resistant to chimeric antigen receptor (CAR) T cell therapy. Here, we explore whether epigenetic manipulation to unleash antigen-independent killing mechanisms can overcome this hurdle. KDM1A is overexpressed in many cancers and removes lysine methylation on histones that keeps the DNA firmly packed to selectively activate or repress gene activity, depending on the specific lysine target. KDM1A also regulates the expression of nonhistone proteins. We inhibited KDM1A in the childhood tumor, neuroblastoma, to increase FAS expression on tumor cells. The FAS receptor can be triggered to induce cell death when bound by the FAS ligand on CAR and other activated T cells present in the tumor environment, even if the tumor cells lack the target antigen. FAS upregulation via KDM1A inhibition sensitized neuroblastoma cells to FAS-FASL-mediated killing and augmented CAR T cell therapy against antigen-poor or even antigen-negative neuroblastoma.
Abstract: Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising treatment strategy, however, therapeutic success against solid tumors such as neuroblastoma remains modest. Recurrence of antigen-poor tumor variants often ultimately results in treatment failure. Using antigen-independent killing mechanisms such as the FAS receptor (FAS)-FAS ligand (FASL) axis through epigenetic manipulation may be a way to counteract the escape achieved by antigen downregulation. Analysis of public RNA-sequencing data from primary neuroblastomas revealed that a particular epigenetic modifier, the histone lysine demethylase 1A (KDM1A), correlated negatively with FAS expression. KDM1A is known to interact with TP53 to repress TP53-mediated transcriptional activation of genes, including FAS. We showed that pharmacologically blocking KDM1A activity in neuroblastoma cells with the small molecule inhibitor, SP-2509, increased FAS cell-surface expression in a strictly TP53-dependent manner. FAS upregulation sensitized neuroblastoma cells to FAS-FASL-dependent killing and augmented L1CAM-directed CAR T cell therapy against antigen-poor or even antigen-negative tumor cells in vitro. The improved therapeutic response was abrogated when the FAS-FASL interaction was abolished with an antagonistic FAS antibody. Our results show that KDM1A inhibition unleashes an antigen-independent killing mechanism via the FAS-FASL axis to make tumor cell variants that partially or totally suppress antigen expression susceptible to CAR T cell therapy
Aberrant signaling of immune cells in Sjögren's syndrome patient subgroups upon interferon stimulation
Background: Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, characterized by mononuclear cell infiltrates in the salivary and lacrimal glands, leading to glandular atrophy and dryness. Patient heterogeneity and lack of knowledge regarding its pathogenesis makes pSS a difficult disease to manage.
Methods: An exploratory analysis using mass cytometry was conducted of MAPK/ERK and JAK/STAT signaling pathways in peripheral blood mononuclear cells (PBMC) from 16 female medication free pSS patients (8 anti-Sjögren’s syndrome-related antigen A negative/SSA- and 8 SSA+) and 8 female age-matched healthy donors after stimulation with interferons (IFNs).
Results: We found significant differences in the frequencies of memory B cells, CD8+ T central and effector memory cells and terminally differentiated CD4+ T cells among the healthy donors and patient subgroups. In addition, we observed an upregulation of HLA-DR and CD38 in many cell subsets in the patients. Upon IFNα2b stimulation, slightly increased signaling through pSTAT1 Y701 was observed in most cell types in pSS patients compared to controls, while phosphorylation of STAT3 Y705 and STAT5 Y694 were slightly reduced. IFNγ stimulation resulted in significantly increased pSTAT1 Y701 induction in conventional dendritic cells (cDCs) and classical and non-classical monocytes in the patients. Most of the observed differences were more prominent in the SSA+ subgroup, indicating greater disease severity in them.
Conclusions: Augmented activation status of certain cell types along with potentiated pSTAT1 Y701 signaling and reduced pSTAT3 Y705 and pSTAT5 Y694 induction may predispose pSS patients, especially the SSA+ subgroup, to upregulated expression of IFN-induced genes and production of autoantibodies. These patients may benefit from therapies targeting these pathways.publishedVersio
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Integrating multiple dimensions of ecological stability into a vulnerability framework
Ecological stability encompasses multiple dimensions of functional and compositional responses to environmental change. Though no single stability dimension used in isolation can fully reflect the overall response to environmental change, a common vulnerability assessment that integrates simultaneously across multiple stability components is highly desirable for ecological risk assessment. We develop both functional and compositional counterparts of a novel, integrative metric of overall ecological vulnerability (OEV). We test the framework with data from a modularized experiment replicated in five lakes over two seasons, examining functional and compositional responses to both pulse and press disturbances across three trophic groups. OEV is measured as the area under the curve integrated over the entire observation period, with the curve delimiting the difference between the disturbance treatment and undisturbed parallel controls, expressed either as the log response ratio of biomass (functional OEV) or community dissimilarity index (compositional OEV). Both, functional and compositional OEV correlated negatively with functional and compositional 'resistance', 'temporal stability' and 'final/extent of recovery' following both pulse and press disturbances, though less so with 'resilience' following a pulse disturbance. We also found a positive correlation between functional and compositional OEV, which reveals the potential to also evaluate the intricate linkage between biodiversity and functional change. Our findings demonstrate that OEV comprises a robust framework to: (a) capture simultaneously multiple functional and compositional stability components, and (b) quantify the functional consequences of biodiversity change. Our results provide the basis for an overarching framework for quantifying the overall vulnerability of ecosystems to environmental change, opening new possibilities for ecological risk assessment and management. Synthesis. Ecological stability comprises multiple dimensions that together encapsulate how ecosystems respond to environmental change. Considering these multiple aspects of stability simultaneously often poses a problem in environmental assessments, which frequently require overarching indicators of risk or vulnerability. While an analysis of multiple dimensions allows for deeper exploration of mechanisms, here we develop and test a new univariate indicator that integrates stability aspects under a broad range of disturbance regimes. Using a modularized experiment in Swedish lakes, we show that this integrative measure captures multiple stability dimensions reflecting compositional and functional vulnerability and their relationships between them
Immune cell activity during anti-TNF treatment in patients with psoriasis and psoriatic arthritis
Psoriasis is a chronic, inflammatory skin disease characterized by a dysregulated immune response and systemic inflammation. Up to one-third of patients with psoriasis have psoriatic arthritis (PsA). Targeted treatment with antibodies neutralizing tumor necrosis factor can ameliorate both diseases. We here explored the impact of long-term infliximab treatment on the composition and activity status of circulating immune cells involved in chronic skin and joint inflammation. Immune cells were analyzed by multicolor flow cytometry. We measured markers of immune activation in peripheral blood mononuclear cell populations in 24 infliximab-treated patients with psoriasis/PsA compared to 32 healthy controls. We observed a significant decrease in the frequency of both peripheral natural killer (NK) cells and their subset CD56dimCD16+ NK cells in PsA compared to healthy controls and patients with psoriasis. The latter had a strong-positive correlation with psoriasis area severity index (PASI) in these patients, while CD56brightCD16− NK cells were negatively correlated with PASI. In addition, we observed an upregulation of CD69+ intermediate CD14+CD16+ and CD69+ classical CD14+CD16− monocytes in PsA and increased activity of CD38+ intermediate CD14+CD16+ monocytes in patients with psoriasis. Compared to healthy controls, psoriasis patients demonstrated shifts of the three B-cell subsets with a decrease in transitional CD27-CD38high B cells. Our exploratory study indicates a preserved pathophysiological process including continuous systemic inflammation despite clinical stability of the patients treated with infliximab.publishedVersio
- …
