36 research outputs found
Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds
A systematic analysis of low temperature magnetic phase diagrams of Ce
compounds is performed in order to recognize the thermodynamic conditions to be
fulfilled by those systems to reach a quantum critical regime and,
alternatively, to identify other kinds of low temperature behaviors. Based on
specific heat () and entropy () results, three different types of
phase diagrams are recognized: i) with the entropy involved into the ordered
phase () decreasing proportionally to the ordering temperature
(), ii) those showing a transference of degrees of freedom from the
ordered phase to a non-magnetic component, with their jump
() vanishing at finite temperature, and iii) those ending in a
critical point at finite temperature because their do not decrease
with producing an entropy accumulation at low temperature.
Only those systems belonging to the first case, i.e. with as
, can be regarded as candidates for quantum critical behavior.
Their magnetic phase boundaries deviate from the classical negative curvature
below \,K, denouncing frequent misleading extrapolations down to
T=0. Different characteristic concentrations are recognized and analyzed for
Ce-ligand alloyed systems. Particularly, a pre-critical region is identified,
where the nature of the magnetic transition undergoes significant
modifications, with its discontinuity strongly
affected by magnetic field and showing an increasing remnant entropy at . Physical constraints arising from the third law at are discussed
and recognized from experimental results
Influence of magnetic fields on structural martensitic transitions
We propose a model which suggests that structural martensitic transitions are related to significant changes in the electronic structure, and are effected by high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of high magnetic field on the transition and lattice dynamics in which the field dependence originates from the dielectric constant. The model is compared with some recent experimental results. © 2010 IOP Publishing Ltd
Simple de Sitter Solutions
We present a framework for de Sitter model building in type IIA string
theory, illustrated with specific examples. We find metastable dS minima of the
potential for moduli obtained from a compactification on a product of two Nil
three-manifolds (which have negative scalar curvature) combined with
orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete
quantum number is taken large, the curvature, field strengths, inverse volume,
and four dimensional string coupling become parametrically small, and the de
Sitter Hubble scale can be tuned parametrically smaller than the scales of the
moduli, KK, and winding mode masses. A subtle point in the construction is that
although the curvature remains consistently weak, the circle fibers of the
nilmanifolds become very small in this limit (though this is avoided in
illustrative solutions at modest values of the parameters). In the simplest
version of the construction, the heaviest moduli masses are parametrically of
the same order as the lightest KK and winding masses. However, we provide a
method for separating these marginally overlapping scales, and more generally
the underlying supersymmetry of the model protects against large corrections to
the low-energy moduli potential.Comment: 37 pages, harvmac big, 4 figures. v3: small correction
The origin of second harmonic generation hotspots in chiral optical metamaterials [Invited]
Novel ways to detect the handedness in chiral optical metamaterials by means of the second harmonic generation (SHG) process have recently been proposed. However, the precise origin of the SHG emission has yet to be unambiguously established. In this paper, we present computational simulations of both the electric currents and the electromagnetic fields in chiral planar metamaterials, at the fundamental frequency (FF), and discuss the implications of our results on the characteristics of experimentally measured SHG. In particular, we show that the results of our numerical simulations are in good agreement with the experimental mapping of SHG sources. Thus, the SHG in these metamaterials can be attributed to a strong local enhancement of the electromagnetic fields at the FF, which depends on the particular structure of the patterned metamaterial
Irreversible dynamics of the phase boundary in U(Ru0.96Rh0.04)2Si2 and implications for ordering.
Stroboscopic phenomena in superconductors with dynamic pinning landscape
Introducing artificial pinning centers is a well established strategy to trap quantum vortices and
increase the maximal magnetic field and applied electric current that a superconductor can sustain
without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting
critical current arises when commensurability between the vortex configurations and the pinning
landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics
it has become possible to exploit the interaction of light with superconductivity, and create not
only spatially periodic imprints on the superconducting condensate, but also temporally periodic
ones. Here we show that in the latter case, temporal matching phenomena develop, caused by
stroboscopic commensurability between the characteristic frequency of the vortex motion under
applied current and the frequency of the dynamic pinning. The matching resonances persist in a
broad parameter space, including magnetic field, driving current, or material purity, giving rise to
unusual features such as externally variable resistance/impedance and Shapiro steps in currentvoltage
characteristics. All features are tunable by the frequency of the dynamic pinning landscape.
These findings open further exploration avenues for using flashing, spatially engineered, and/or
mobile excitations on superconductors, permitting us to achieve advanced functionalities.status: publishe
Equilibrium basal-plane magnetization of superconductive YNi(2)B(2)C: The influence of nonlocal electrodynamics
For a single crystal of YNi(2)B(2)C superconductor, the equilibrium magnetization M in the square basal Plane has been studied experimentally as a function of temperature and magnetic field. While the magnetization M(H) deviates from conventional London predictions, a recent extension of London theory (to include effects of nonlocal electrodynamics) describes the experiments accurately. The resulting superconductive parameters are well behaved. These results are compared with corresponding findings for the case with M perpendicular to the basal plane
Determination of the magnetic penetration depth in a superconducting Pb film
By means of scanning Hall probe microscopy technique, we accurately map the magnetic field
pattern produced by Meissner screening currents in a thin superconducting Pb stripe. The obtained
field profile allows us to quantitatively estimate the Pearl length K without the need of
pre-calibrating the Hall sensor. This fact contrasts with the information acquired through the spatial
field dependence of an individual flux quantum where the scanning height and the magnetic
penetration depth combine in a single inseparable parameter. The derived London penetration
depth kL coincides with the values previously reported for bulk Pb once the kinetic suppression
of the order parameter is properly taken into account.status: publishe
Imprinting superconducting vortex footsteps in a magnetic layer
Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories
Closer look at the low-frequency dynamics of vortex matter using scanning susceptibility microscopy
Using scanning susceptibility microscopy, we shed light on the dynamics of individual superconducting vortices and examine the hypotheses of the phenomenological models traditionally used to explain the macroscopic ac electromagnetic properties of superconductors. The measurements, carried out on a 2H-NbSe2 single crystal at relatively high temperature (T = 6.8 K), show a linear amplitude dependence of the global ac susceptibility for excitation amplitudes between 0.3 and 2.6 Oe. We observe that the low amplitude response, typically attributed to the oscillation of vortices in a potential well defined by a single, relaxing, Labusch constant, actually corresponds to strongly nonuniform vortex shaking. This is particularly pronounced in the field-cooled disordered phase, which undergoes a dynamic reorganization above 0.8 Oe as evidenced by the healing of lattice defects and a more uniform oscillation of vortices. These observations are corroborated by molecular dynamics simulations when choosing the microscopic input parameters from the experiments. The theoretical simulations allow us to reconstruct the vortex trajectories, providing deeper insight into the thermally induced hopping dynamics and the vortex lattice reordering.status: publishe
