4,318 research outputs found

    The path of a social entrepreneur

    Get PDF
    An entrepreneur with a social conscience, Andrea Silbert, relates the journey that inspired her to found the Center for Women and Enterprise, a nonprofit center supporting women-owned businesses.Women-owned business enterprises ; Women executives

    Temporally heterogeneous dynamics in granular flows

    Get PDF
    Granular simulations are used to probe the particle scale dynamics at short, intermediate, and long time scales for gravity driven, dense granular flows down an inclined plane. On approach to the angle of repose, where motion ceases, the dynamics become intermittent over intermediate times, with strong temporal correlations between particle motions -- temporally heterogeneous dynamics. This intermittency is characterised through large scale structural events whereby the contact network periodically spans the system. A characteristic time scale associated with these processes increases as the stopped state is approached. These features are discussed in the context of the dynamics of supercooled liquids near the glass transition.Comment: Under review PRL, 4 pages + 9 .eps figure

    Stress Response in Confined Arrays of Frictional and Frictionless Particles

    Get PDF
    Stress transmission inside three dimensional granular packings is investigated using computer simulations. Localized force perturbation techniques are implemented for frictionless and frictional shallow, ordered, granular arrays confined by solid boundaries for a range of system sizes. Stress response profiles for frictional packings agree well with the predictions for the semi-infinite half plane of classical isotropic elasticity theory down to boxes of linear dimensions of approximately forty particle diameters and over several orders of magnitude in the applied force. The response profiles for frictionless packings exhibit a transitional regime to strongly anisotropic features with increasing box size. The differences between the nature of the stress response are shown to be characterized by very different particle displacement fields.Comment: To appear in J. Sta

    Long wavelength structural anomalies in jammed systems

    Get PDF
    The structural properties of static, jammed packings of monodisperse spheres in the vicinity of the jamming transition are investigated using large-scale computer simulations. At small wavenumber kk, we argue that the anomalous behavior in the static structure factor, S(k)kS(k) \sim k, is consequential of an excess of low-frequency, collective excitations seen in the vibrational spectrum. This anomalous feature becomes more pronounced closest to the jamming transition, such that S(0)0S(0) \to 0 at the transition point. We introduce an appropriate dispersion relation that accounts for these phenomena that leads us to relate these structural features to characteristic length scales associated with the low-frequency vibrational modes of these systems. When the particles are frictional, this anomalous behavior is suppressed providing yet more evidence that jamming transitions of frictional spheres lie at lower packing fractions that that for frictionless spheres. These results suggest that the mechanical properties of jammed and glassy media may therefore be inferred from measurements of both the static and dynamical structure factors.Comment: 8 pages, 6 figure captions. Completely revised version to appear in Phys. Rev.

    Breakdown of Kinetic Compensation Effect in Physical Desorption

    Full text link
    The kinetic compensation effect (KCE), observed in many fields of science, is the systematic variation in the apparent magnitudes of the Arrhenius parameters EaE_a, the energy of activation, and ν\nu, the preexponential factor, as a response to perturbations. If, in a series of closely related activated processes, these parameters exhibit a strong linear correlation, it is expected that an isokinetic relation will occur, then the rates kk become the same at a common compensation temperature TcT_c. The reality of these two phenomena continues to be debated as they have not been explicitly demonstrated and their physical origins remain poorly understood. Using kinetic Monte Carlo simulations on a model interface, we explore how site and adsorbate interactions influence the Arrhenius parameters during a typical desorption process. We find that their transient variations result in a net partial compensation, due to the variations in the prefactor not being large enough to completely offset those in EaE_a, both in plots that exhibit a high degree of linearity and in curved non-Arrhenius plots. In addition, the observed isokinetic relation arises due to a transition to a non-interacting regime, and not due to compensation between EaE_a and lnν\ln{\nu}. We expect our results to provide a deeper insight into the microscopic events that originate compensation effects and isokinetic relations in our system, and in other fields where these effects have been reported.Comment: 11 pages, 17 figures, 3 table

    Critical-like Features of Stress Response in Frictional Packings

    Full text link
    The mechanical response of static, unconfined, overcompressed face centred cubic, granular arrays is studied using large-scale, discrete element method simulations. Specifically, the stress response due to the application of a localised force perturbation - the Green function technique - is obtained in granular packings generated over several orders of magnitude in both the particle friction coefficient and the applied forcing. We observe crossover behaviour in the mechanical state of the system characterised by the changing nature of the resulting stress response. The transition between anisotropic and isotropic stress response exhibits critical-like features through the identification of a diverging length scale that distinguishes the spatial extent of anisotropic regions from those that display isotropic behaviour. A multidimensional phase diagram is constructed that parameterises the response of the system due to changing friction and force perturbations.Comment: To appear in J. Sta

    Confined granular packings: structure, stress, and forces

    Full text link
    The structure and stresses of static granular packs in cylindrical containers are studied using large-scale discrete element molecular dynamics simulations in three dimensions. We generate packings by both pouring and sedimentation and examine how the final state depends on the method of construction. The vertical stress becomes depth-independent for deep piles and we compare these stress depth-profiles to the classical Janssen theory. The majority of the tangential forces for particle-wall contacts are found to be close to the Coulomb failure criterion, in agreement with the theory of Janssen, while particle-particle contacts in the bulk are far from the Coulomb criterion. In addition, we show that a linear hydrostatic-like region at the top of the packings unexplained by the Janssen theory arises because most of the particle-wall tangential forces in this region are far from the Coulomb yield criterion. The distributions of particle-particle and particle-wall contact forces P(f)P(f) exhibit exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references, fixed typo

    Cut-off nonlinearities in the low-temperature vibrations of glasses and crystals

    Full text link
    We present a computer simulation study of glassy and crystalline states using the standard Lennard-Jones interaction potential that is truncated at a finite cut-off distance, as is typical of many computer simulations. We demonstrate that the discontinuity at the cut-off distance in the first derivative of the potential (corresponding to the interparticle force) leads to the appearance of cut-off nonlinearities. These cut-off nonlinearities persist into the very-low-temperature regime thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic approximation for many eigen modes, particularly for low-frequency vibrational modes. Furthermore, while expansion nonlinearities which are due to higher order terms in the Taylor expansion of the interaction potential are usually ignored at low temperatures and show up as the temperature increases, cut-off nonlinearities can become most significant at the lowest temperatures. Anharmonic effects readily show up in the elastic moduli which not only depend on the eigen frequencies, but are crucially sensitive to the eigen vectors of the normal modes. Whereas, those observables that rely mainly on static structural information or just the eigen frequencies, such as the vibrational density of states, total potential energy, and specific heat, show negligible dependence on the presence of the cut-off. Similar aspects of nonlinear behavior have recently been reported in model granular materials, where the constituent particles interact through finite-range, purely-repulsive potentials. These nonlinearities have been ascribed to the nature of the sudden cut-off at contact in the force-law, thus we demonstrate that cut-off nonlinearities emerge as a general feature of ordered and disordered solid state systems interacting through truncated potentials.Comment: 20 pages, 16 figures, 2 table
    corecore