20 research outputs found

    White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers

    No full text
    Three different pi-conjugated oligomers (a blue-emitting oligofluorene, a green-emitting oligo(phenylene vinylene), and a red-emitting perylene bisimide) have been functionalized with self-complementary quadruple hydrogen bonding ureidopyrimidinone (UPy) units at both ends. The molecules self-assemble in solution and in the bulk, forming supramolecular polymers. When mixed together in solution, random noncovalent copolymers are formed that contain all three types of chromophores, resulting in energy transfer upon excitation of the oligofluorene energy donor. At a certain mixing ratio, a white emissive supramolecular polymer can be created in solution. In contrast to their unfunctionalized counterparts, bis-UPy-chromophores can easily be deposited as smooth thin films on surfaces by spin coating. No phase separation is observed in these films, and energy transfer is much more efficient than in solution, giving rise to white fluorescence at much lower ratios of energy acceptor to donor. Light emitting diodes based on these supramolecular polymers have been prepared from all three types of pure materials, yielding blue, green, and red devices, respectively. At appropriate mixing ratios of these three compounds, white electroluminescence is observed. This approach yields a toolbox of molecules that can be easily used to construct pi-conjugated supramolecular polymers with a variety of compositions, high solution viscosities, and tuneable emission colors

    Sigma-1 Agonist Binding in the Aging Rat Brain: a MicroPET Study with [11C]SA4503

    Get PDF
    Purpose: Sigma-1 receptor ligands modulate the release of several neurotransmitters and intracellular calcium signaling. We examined the binding of a radiolabeled sigma-1 agonist in the aging rat brain with positron emission tomography (PET). Procedures: Time-dependent uptake of [11C]SA4503 was measured in the brain of young (1.5 to 3 months) and aged (18 to 32 months) Wistar Hannover rats, and tracer-kinetic models were fitted to this data, using metabolite-corrected plasma radioactivity as input function. Results: In aged animals, the injected probe was less rapidly metabolized and cleared. Logan graphical analysis and a 2-tissue compartment model (2-TCM) fit indicated changes of total distribution volume (VT) and binding potential (BPND) of the tracer. BPND was reduced particularly in the (hypo)thalamus, pons, and medulla. Conclusions: Some areas showed reductions of ligand binding with aging whereas binding in other areas (cortex) was not significantly affected. © 2015 The Author(s

    Infralimbic and dorsal raphé microinjection of the 5-HT1B receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice

    No full text
    RATIONALE: Aggressive behavior and impaired impulse control have been associated with dysregulations in the serotonergic system and with impaired functioning of the prefrontal cortex. 5-HT(1B) receptors have been shown to specifically modulate several types of offensive aggression. OBJECTIVE: To characterize the relative importance of 2 populations of 5-HT(1B) receptors in the dorsal raphé nucleus (DRN) and infralimbic cortex (ILC) in the modulation of aggressive behavior. METHODS: Male CFW mice were conditioned on a fixed-ratio 5 schedule of reinforcement to self-administer a 6% (w/v) alcohol solution. Mice repeatedly engaged in 5 min aggressive confrontations until aggressive behavior stabilized. Next, a cannula was implanted into either the DRN or the ILC. After recovery, mice were tested for aggression after self-administration of either 1.0 g/kg alcohol or water prior to a microinjection of the 5-HT(1B) agonist, CP-93,129 (0–1.0 µg/infusion). RESULTS: In both the DRN and ILC, CP-93,129 reduced aggressive behaviors after both water and alcohol self-administration. Intra-raphé CP-93,129 dose-dependently reduced both aggressive and locomotor behaviors. However, the anti-aggressive effects of intra-cortical CP-93,129 were behaviorally specific. CONCLUSIONS: These findings highlight the importance of the serotonergic system in the modulation of aggression and suggest that the behaviorally specific effects of 5-HT(1B) receptor agonists are regionally selective. 5-HT(1B) receptors in a medial subregion of the prefrontal cortex, the ILC, appear to be critically involved in the attenuation of species-typical levels of aggression

    C<sub>60</sub> and Sc<sub>3</sub>N@C<sub>80</sub>(TMB-PPO) derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    No full text

    Origin, causes and effects of increased nitrite concentrations in aquatic environments

    No full text
    Literature frequently mentions increased nitrite concentrations along with its inhibitory effect towards bacteria and aquatic life. Nitrite accumulation has been studied for decades, and although numerous causal factors have already been commented on in literature, the mechanism of nitrite accumulation is not always clear. From the broad range of parameters and environmental factors reviewed in this paper, it is obvious that the causes and consequences of nitrite accumulation are not yet completely understood. Among others, pH, dissolved oxygen, volatile fatty acids, phosphate and reactor operation have been found to play a role in nitrite accumulation, which results from differential inhibition or disruption of the linkage of the different steps in both nitrification and denitrification. In the case of nitrification, this differential inhibition could lead to the displacement or unlinking of the ammonia oxidisers and nitrite oxidisers. In this paper, the idea is formulated that the nitrifier population forms a role model for the total microbial community. Increased nitrite concentrations would in this aspect not only signal a disruption of nitrifiers, but possibly also of the total configuration of the microbial community. [KEYWORDS: denitrification, nitrification, nitrite accumulation, nitrite toxicity]
    corecore