97 research outputs found

    Large-scale inference of the point mutational spectrum in human segmental duplications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent segmental duplications are relatively large (≥ 1 kb) genomic regions of high sequence identity (≥ 90%). They cover approximately 4–5% of the human genome and play important roles in gene evolution and genomic disease. The DNA sequence differences between copies of a segmental duplication represent the result of various mutational events over time, since any two duplication copies originated from the same ancestral DNA sequence. Based on this fact, we have developed a computational scheme for inference of point mutational events in human segmental duplications, which we collectively term duplication-inferred mutations (DIMs). We have characterized these nucleotide substitutions by comparing them with high-quality SNPs from dbSNP, both in terms of sequence context and frequency of substitution types.</p> <p>Results</p> <p>Overall, DIMs show a lower ratio of transitions relative to transversions than SNPs, although this ratio approaches that of SNPs when considering DIMs within most recent duplications. Our findings indicate that DIMs and SNPs in general are caused by similar mutational mechanisms, with some deviances at the CpG dinucleotide. Furthermore, we discover a large number of reference SNPs that coincide with computationally inferred DIMs. The latter reflects how sequence variation in duplicated sequences can be misinterpreted as ordinary allelic variation.</p> <p>Conclusion</p> <p>In summary, we show how DNA sequence analysis of segmental duplications can provide a genome-wide mutational spectrum that mirrors recent genome evolution. The inferred set of nucleotide substitutions represents a valuable complement to SNPs for the analysis of genetic variation and point mutagenesis.</p

    Cancer Predisposition Sequencing Reporter (CPSR): A flexible variant report engine for high-throughput germline screening in cancer

    Get PDF
    The value of high-throughput germline genetic testing is increasingly recognized inclinical cancer care. Disease-associated germline variants in cancer patients areimportant for risk management and surveillance, surgical decisions and can also havemajor implications for treatment strategies since many are in DNA repair genes. Withthe increasing availability of high-throughput DNA sequencing in cancer clinics andresearch, there is thus a need to provide clinically oriented sequencing reports forgermline variants and their potential therapeutic relevance on a per-patient basis. Tomeet this need, we have developed the Cancer Predisposition Sequencing Reporter(CPSR), an open-source computational workflow that generates a structured reportof germline variants identified in known cancer predisposition genes, highlightingmarkers of therapeutic, prognostic and diagnostic relevance. A fully automated vari-ant classification procedure based on more than 30 refined American College ofMedical Genetics and Genomics (ACMG) criteria represents an integral part of theworkflow. Importantly, the set of cancer predisposition genes profiled in the reportcan be flexibly chosen from more than 40 virtual gene panels established by scientificexperts, enabling customization of the report for different screening purposes andclinical contexts. The report can be configured to also list actionable secondary vari-ant findings, as recommended by ACMG. CPSR demonstrates comparable sensitivityand specificity for the detection of pathogenic variants when compared to otheralgorithms in the field. Technically, the tool is implemented in Python/R, and is freelyavailable through Docker technology. Source code, documentation, example reportsand installation instructions are accessible via the project GitHub page: https://github.com/sigven/cpsr.publishedVersio

    Unstable DNA Repair Genes Shaped by Their Own Sequence Modifying Phenotypes

    Get PDF
    The question of whether natural selection favors genetic stability or genetic variability is a fundamental problem in evolutionary biology. Bioinformatic analyses demonstrate that selection favors genetic stability by avoiding unstable nucleotide sequences in protein encoding DNA. Yet, such unstable sequences are maintained in several DNA repair genes, thereby promoting breakdown of repair and destabilizing the genome. Several studies have therefore argued that selection favors genetic variability at the expense of stability. Here we propose a new evolutionary mechanism, with supporting bioinformatic evidence, that resolves this paradox. Combining the concepts of gene-dependent mutation biases and meiotic recombination, we argue that unstable sequences in the DNA mismatch repair (MMR) genes are maintained by their own phenotype. In particular, we predict that human MMR maintains an overrepresentation of mononucleotide repeats (monorepeats) within and around the MMR genes. In support of this hypothesis, we report a 31% excess in monorepeats in 250 kb regions surrounding the seven MMR genes compared to all other RefSeq genes (1.75 vs. 1.34%, P = 0.0047), with a particularly high content in PMS2 (2.41%, P = 0.0047) and MSH6 (2.07%, P = 0.043). Based on a mathematical model of monorepeat frequency, we argue that the proposed mechanism may suffice to explain the observed excess of repeats around MMR genes. Our findings thus indicate that unstable sequences in MMR genes are maintained through evolution by the MMR mechanism. The evolutionary paradox of genetically unstable DNA repair genes may thus be explained by an equilibrium in which the phenotype acts back on its own genotype

    Strategies to inhibit FGFR4 V550L-driven rhabdomyosarcoma

    Get PDF
    Background: Rhabdomyosarcoma (RMS) is a paediatric cancer driven either by fusion proteins (e.g., PAX3-FOXO1) or by mutations in key signalling molecules (e.g., RAS or FGFR4). Despite the latter providing opportunities for precision medicine approaches in RMS, there are currently no such treatments implemented in the clinic. Methods: We evaluated biologic properties and targeting strategies for the FGFR4 V550L activating mutation in RMS559 cells, which have a high allelic fraction of this mutation and are oncogenically dependent on FGFR4 signalling. Signalling and trafficking of FGFR4 V550L were characterised by confocal microscopy and proteomics. Drug effects were determined by live-cell imaging, MTS assay, and in a mouse model. Results: Among recently developed FGFR4-specific inhibitors, FGF401 inhibited FGFR4 V550L-dependent signalling and cell proliferation at low nanomolar concentrations. Two other FGFR4 inhibitors, BLU9931 and H3B6527, lacked potent activity against FGFR4 V550L. Alternate targeting strategies were identified by RMS559 phosphoproteomic analyses, demonstrating that RAS/MAPK and PI3K/AKT are essential druggable pathways downstream of FGFR4 V550L. Furthermore, we found that FGFR4 V550L is HSP90- dependent, and HSP90 inhibitors efficiently impeded RMS559 proliferation. In a RMS559 mouse xenograft model, the pan-FGFR inhibitor, LY2874455, did not efficiently inhibit growth, whereas FGF401 potently abrogated growth. Conclusions: Our results pave the way for precision medicine approaches against FGFR4 V550L-driven RMS

    The Quandary of DNA-Based Treatment Assessment in De Novo Metastatic Prostate Cancer in the Era of Precision Oncology.

    Get PDF
    Guidelines for genetic testing have been established for multiple tumor types, frequently indicating the most confident molecularly targeted treatment options. However, considering the often-complex presentation of individual cancer patients, in addition to the combinatorial complexity and inherent uncertainties of molecular findings, deriving optimal treatment strategies frequently becomes very challenging. Here, we report a comprehensive analysis of a 68-year-old male with metastatic prostate cancer, encompassing pathology and MRI findings, transcriptomic results, and key genomics findings from whole-exome sequencing, both somatic aberrations and germline variants. We identify multiple somatic aberrations that are known to be enriched in prostate cancer, including a deletion of PTEN and a fusion transcript involving BRCA2. The gene expression patterns in the tumor biopsy were also strikingly similar to prostate tumor samples from TCGA. Furthermore, we detected multiple lines of evidence for homologous recombination repair deficiency (HRD), including a dominant contribution by mutational signature SBS3, which is specifically attributed to HRD. On the basis of the genomic and transcriptomic findings, and in light of the clinical case presentation, we discussed the personalized treatment options that exist for this patient and the various challenges that one faces in the process of translating high-throughput sequencing data towards treatment regimens

    Results of multigene panel testing in familial cancer cases without genetic cause demonstrated by single gene testing

    Get PDF
    We have surveyed 191 prospectively sampled familial cancer patients with no previously detected pathogenic variant in the BRCA1/2, PTEN, TP53 or DNA mismatch repair genes. In all, 138 breast cancer (BC) cases, 34 colorectal cancer (CRC) and 19 multiple early-onset cancers were included. A panel of 44 cancer-predisposing genes identified 5% (9/191) pathogenic or likely pathogenic variants and 87 variants of uncertain significance (VUS). Pathogenic or likely pathogenic variants were identified mostly in familial BC individuals (7/9) and were located in 5 genes: ATM (3), BRCA2 (1), CHEK2 (1), MSH6 (1) and MUTYH (1), followed by multiple early-onset (2/9) individuals, affecting the CHEK2 and ATM genes. Eleven of the 87 VUS were tested, and 4/11 were found to have an impact on splicing by using a minigene splicing assay. We here report for the first time the splicing anomalies using this assay for the variants ATM c.3806A > G and BUB1 c.677C >T, whereas CHEK1 c.61G > A did not result in any detectable splicing anomaly. Our study confirms the presence of pathogenic or likely pathogenic variants in genes that are not routinely tested in the context of the above-mentioned clinical phenotypes. Interestingly, more than half of the pathogenic germline variants were found in the moderately penetrant ATM and CHEK2 genes, where only truncating variants from these genes are recommended to be reported in clinical genetic testing practice

    Identification of genetic variants for clinical management of familial colorectal tumors

    Get PDF
    Background: The genetic mechanisms for families who meet the clinical criteria for Lynch syndrome (LS) but do not carry pathogenic variants in the mismatch repair (MMR) genes are still undetermined. We aimed to study the potential contribution of genes other than MMR genes to the biological and clinical characteristics of Norwegian families fulfilling Amsterdam (AMS) criteria or revised Bethesda guidelines. Methods: The Hereditary Cancer Biobank of the Norwegian Radium Hospital was interrogated to identify individuals with a high risk of developing colorectal cancer (CRC) for whom no pathogenic variants in MMR genes had been found in routine diagnostic DNA sequencing. Forty-four cancer susceptibility genes were selected and analyzed by using our in-house designed TruSeq amplicon-based assay for targeted sequencing. RNA splicing-and protein-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as likely to affect splicing were experimentally analyzed by resorting to minigene assays. Results: We identified a patient who met the revised Bethesda guidelines and carried a likely pathogenic variant in CHEK2 (c.470 T > C, p.I157T). In addition, 25 unique VUS were identified in 18 individuals, of which 2 exonic variants (MAP3K1 c.764A > G and NOTCH3 c.5854G > A) were analyzed in the minigene splicing assay and found not to have an effect on RNA splicing. Conclusions: Among high-risk CRC patients that fulfill the AMS criteria or revised Bethesda guidelines, targeted gene sequencing identified likely pathogenic variant and VUS in other genes than the MMR genes (CHEK2, NOTCH3 and MAP3K1). Our study suggests that the analysis of genes currently excluded from routine molecular diagnostic screens may confer cancer susceptibility

    GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome

    Get PDF
    Background: Recent large-scale undertakings such as ENCODE and Roadmap Epigenomics have generated experimental data mapped to the human reference genome (as genomic tracks) representing a variety of functional elements across a large number of cell types. Despite the high potential value of these publicly available data for a broad variety of investigations, little attention has been given to the analytical methodology necessary for their widespread utilisation. Findings: We here present a first principled treatment of the analysis of collections of genomic tracks. We have developed novel computational and statistical methodology to permit comparative and confirmatory analyses across multiple and disparate data sources. We delineate a set of generic questions that are useful across a broad range of investigations and discuss the implications of choosing different statistical measures and null models. Examples include contrasting analyses across different tissues or diseases. The methodology has been implemented in a comprehensive open-source software system, the GSuite HyperBrowser. To make the functionality accessible to biologists, and to facilitate reproducible analysis, we have also developed a web-based interface providing an expertly guided and customizable way of utilizing the methodology. With this system, many novel biological questions can flexibly be posed and rapidly answered. Conclusions: Through a combination of streamlined data acquisition, interoperable representation of dataset collections, and customizable statistical analysis with guided setup and interpretation, the GSuite HyperBrowser represents a first comprehensive solution for integrative analysis of track collections across the genome and epigenome. The software is available at: https://hyperbrowser.uio.no.This work was supported by the Research Council of Norway (under grant agreements 221580, 218241, and 231217/F20), by the Norwegian Cancer Society (under grant agreements 71220’PR-2006-0433 and 3485238-2013), and by the South-Eastern Norway Regional Health Authority (under grant agreement 2014041).Peer Reviewe

    Genetic variants of prospectively demonstrated phenocopies in BRCA1/2 kindreds

    Get PDF
    Background: In kindreds carrying path_BRCA1/2 variants, some women in these families will develop cancer despite testing negative for the family's pathogenic variant. These families may have additional genetic variants, which not only may increase the susceptibility of the families' path_BRCA1/2, but also be capable of causing cancer in the absence of the path_BRCA1/2 variants. We aimed to identify novel genetic variants in prospectively detected breast cancer (BC) or gynecological cancer cases tested negative for their families' pathogenic BRCA1/2 variant (path_BRCA1 or path_BRCA2). Methods: Women with BC or gynecological cancer who had tested negative for path_BRCA1 or path_BRCA2 variants were included. Forty-four cancer susceptibility genes were screened for genetic variation through a targeted amplicon-based sequencing assay. Protein- and RNA splicing-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as the ones most likely affecting pre-mRNA splicing were experimentally analyzed in a minigene assay. Results: We identified 48 women who were tested negative for their family's path_BRCA1 (n = 13) or path_BRCA2 ( n = 35) variants. Pathogenic variants in the ATM, BRCA2, MSH6 and MUTYH genes were found in 10% (5/48) of the cases, of whom 15% (2/13) were from path_BRCA1 and 9% (3/35) from path_ BRCA2 families. Out of the 26 unique VUS, 3 (12%) were predicted to affect RNA splicing (APC c. 721G > A, MAP3K1 c.764A > G and MSH2 c.815C > T). However, by using a minigene, assay we here show that APC c. 721G > A does not cause a splicing defect, similarly to what has been recently reported for the MAP3K1 c.764A > G. The MSH2 c.815C > T was previously described as causing partial exon skipping and it was identified in this work together with the path_ BRCA2 c.9382C > T (p.R3128X). Conclusion: All women in breast or breast/ovarian cancer kindreds would benefit from being offered genetic testing irrespective of which causative genetic variants have been demonstrated in their relatives
    corecore