197 research outputs found

    Understanding Polarization Correlation of Entangled Vector Meson Pairs

    Full text link
    We propose an experimental test of local hidden variable theories against quantum mechanics by measuring the polarization correlation of entangled vector meson pairs. In our study, the form of the polarization correlation probability is reproduced in a natural way by interpreting the two-body decay of the meson as a measurement of its polarization vector within the framework of quantum mechanics. This provides more detailed information on the quantum entanglement, thus a new Monte Carlo method to simulate the quantum correlation is introduced. We discuss the feasibility of carrying out such a test at experiments in operation currently and expect that the measured correlated distribution may provide us with deeper insight into the fundamental question about locality and reality.Comment: 7 pages, 3 figures. v3: The version published in PR

    LKM: A LDA-Based K

    Get PDF

    Probing darK Matter Using free leptONs: PKMUON

    Full text link
    We propose a new method to detect sub-GeV dark matter, through their scatterings from free leptons and the resulting kinematic shifts. Specially, such an experiment can detect dark matter interacting solely with muons. The experiment proposed here is to directly probe muon-philic dark matter, in a model-independent way. Its complementarity with the muon on target proposal, is similar to, e.g. XENON/PandaX and ATLAS/CMS on dark matter searches. Moreover, our proposal can work better for relatively heavy dark matter such as in the sub-GeV region. We start with a small device of a size around 0.1 to 1 meter, using atmospheric muons to set up a prototype. Within only one year of operation, the sensitivity on cross section of dark matter scattering with muons can already reach ΟƒD∼10βˆ’19(βˆ’20,β€‰βˆ’18)cm2\sigma_D\sim 10^{-19 (-20,\,-18)}\rm{cm}^{2} for a dark mater MD=100 (10, 1000)\rm{M_D}=100\, (10,\,1000) MeV. We can then interface the device with a high intensity muon beam of 101210^{12}/bunch. Within one year, the sensitivity can reach ΟƒD∼10βˆ’27(βˆ’28,β€‰βˆ’26)cm2\sigma_D\sim 10^{-27 (-28,\,-26)}\rm{cm}^{2} for MD=100 (10, 1000)\rm{M_D}=100\, (10,\,1000) MeV.Comment: 5 pages, 3 figures, muons enlighten darknes

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR
    • …
    corecore