119 research outputs found

    Contexts and mechanisms that promote access to healthcare for populations experiencing homelessness: A realist review

    Get PDF
    ObjectiveThe objective of this study was to identify and understand the health system contexts and mechanisms that allow for homeless populations to access appropriate healthcare when needed.DesignA realist review.Data sourcesOvid MEDLINE, embase.com, CINAHL, ASSIA and grey literature until April 2019.Eligibility criteria for selecting studiesThe purpose of the review was to identify health system patterns which enable access to healthcare for people who experience homelessness. Peer-reviewed articles were identified through a systematic search, grey literature search, citation tracking and expert recommendations. Studies meeting the inclusion criteria were assessed for rigour and relevance and coded to identify data relating to contexts, mechanisms and/or outcomes.AnalysisInductive and deductive coding was used to generate context–mechanism–outcome configurations, which were refined and then used to build several iterations of the overarching programme theory.ResultsSystematic searching identified 330 review articles, of which 24 were included. An additional 11 grey literature and primary sources were identified through citation tracking and expert recommendation. Additional purposive searching of grey literature yielded 50 records, of which 12 were included, for a total of 47 included sources. The analysis found that healthcare access for populations experiencing homelessness is improved when services are coordinated and delivered in a way that is organised around the person with a high degree of flexibility and a culture that rejects stigma, generating trusting relationships between patients and staff/practitioners. Health systems should provide long-term, dependable funding for services to ensure sustainability and staff retention.ConclusionsWith homelessness on the rise internationally, healthcare systems should focus on high-level factors such as funding stability, building inclusive cultures and setting goals which encourage and support staff to provide flexible, timely and connected services to improve access.</jats:sec

    Reducing health inequalities through general practice: protocol for a realist review (EQUALISE).

    Get PDF
    INTRODUCTION: Healthcare organisations recognise the moral imperative to address inequalities in health outcomes but often lack an understanding of which types of interventions are likely to reduce them. This realist review will examine the existing evidence on the types of interventions or aspects of routine care in general practice that are likely to decrease or increase health inequalities (ie, inequality-generating interventions) across cardiovascular disease, cancer, diabetes and chronic obstructive pulmonary disease. METHODS AND ANALYSIS: Our realist review will follow Pawson's five iterative stages. We will start by developing an initial programme theory based on existing theories and discussions with stakeholders. To navigate the large volume of literature, we will access the primary studies through the identification of published systematic reviews of interventions delivered in general practice across the four key conditions. We will examine the primary studies included within each systematic review to identify those reporting on inequalities across PROGRESS-Plus categories. We will collect data on a range of clinical outcomes including prevention, diagnosis, follow-up and treatment. The data will be synthesised using a realist logic of analysis. The findings will be a description and explanation of the general practice interventions which are likely to increase or decrease inequalities across the major conditions. ETHICS AND DISSEMINATION: Ethics approval is not required because this study does not include any primary research. The findings will be integrated into a series of guiding principles and a toolkit for healthcare organisations to reduce health inequalities. Findings will be disseminated through peer-reviewed publications, conference presentations and user-friendly summaries. PROSPERO REGISTRATION NUMBER: CRD42020217871

    Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factors peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated during differentiation of murine 3T3-L1 adipocytes.</p> <p>Results</p> <p>Here we have mapped all binding sites of C/EBPα and PPARγ in human SGBS adipocytes and compared these with the genome-wide profiles from mouse adipocytes to systematically investigate what biological features correlate with retention of sites in orthologous regions between mouse and human. Despite a limited interspecies retention of binding sites, several biological features make sites more likely to be retained. First, co-binding of PPARγ and C/EBPα in mouse is the most powerful predictor of retention of the corresponding binding sites in human. Second, vicinity to genes highly upregulated during adipogenesis significantly increases retention. Third, the presence of C/EBPα consensus sites correlate with retention of both factors, indicating that C/EBPα facilitates recruitment of PPARγ. Fourth, retention correlates with overall sequence conservation within the binding regions independent of C/EBPα and PPARγ sequence patterns, indicating that other transcription factors work cooperatively with these two key transcription factors.</p> <p>Conclusions</p> <p>This study provides a comprehensive and systematic analysis of what biological features impact on retention of binding sites between human and mouse. Specifically, we show that the binding of C/EBPα and PPARγ in adipocytes have evolved in a highly interdependent manner, indicating a significant cooperativity between these two transcription factors.</p

    Transcriptomic Coordination in the Human Metabolic Network Reveals Links between n-3 Fat Intake, Adipose Tissue Gene Expression and Metabolic Health

    Get PDF
    Understanding the molecular link between diet and health is a key goal in nutritional systems biology. As an alternative to pathway analysis, we have developed a joint multivariate and network-based approach to analysis of a dataset of habitual dietary records, adipose tissue transcriptomics and comprehensive plasma marker profiles from human volunteers with the Metabolic Syndrome. With this approach we identified prominent co-expressed sub-networks in the global metabolic network, which showed correlated expression with habitual n-3 PUFA intake and urinary levels of the oxidative stress marker 8-iso-PGF2α. These sub-networks illustrated inherent cross-talk between distinct metabolic pathways, such as between triglyceride metabolism and production of lipid signalling molecules. In a parallel promoter analysis, we identified several adipogenic transcription factors as potential transcriptional regulators associated with habitual n-3 PUFA intake. Our results illustrate advantages of network-based analysis, and generate novel hypotheses on the transcriptomic link between habitual n-3 PUFA intake, adipose tissue function and oxidative stress

    Effects and Action Mechanisms of Berberine and Rhizoma coptidis on Gut Microbes and Obesity in High-Fat Diet-Fed C57BL/6J Mice

    Get PDF
    Gut microbes play important roles in regulating fat storage and metabolism. Rhizoma coptidis (RC) and its main active compound, berberine, have either antimicrobial or anti-obesity activities. In the present study, we hypothesize that RC exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes and berberine may be a key compound of RC. Gut microbes and glucose and lipid metabolism in high-fat diet-fed C57BL/6J (HFD) mice in vivo are investigated after RC and berberine treatments. The results show that RC (200 mg/kg) and berberine (200 mg/kg) significantly lower both body and visceral adipose weights, and reduce blood glucose and lipid levels, and decrease degradation of dietary polysaccharides in HFD mice. Both RC and berberine significantly reduce the proportions of fecal Firmicutes and Bacteroidetes to total bacteria in HFD mice. In the trial ex vivo, both RC and berberine significantly inhibit the growth of gut bacteria under aerobic and anaerobic conditions. In in vitro trials, both RC and berberine significantly inhibit the growth of Lactobacillus (a classical type of Firmicutes) under anaerobic conditions. Furthermore, both RC and berberine significantly increase fasting-induced adipose factor (Fiaf, a key protein negatively regulated by intestinal microbes) expressions in either intestinal or visceral adipose tissues. Both RC and berberine significantly increase mRNA expressions of AMPK, PGC1α, UCP2, CPT1α, and Hadhb related to mitochondrial energy metabolism, which may be driven by increased Fiaf expression. These results firstly suggest that antimicrobial activities of RC and berberine may result in decreasing degradation of dietary polysaccharides, lowering potential calorie intake, and then systemically activating Fiaf protein and related gene expressions of mitochondrial energy metabolism in visceral adipose tissues. Taken together, these action mechanisms may contribute to significant anti-obesity effects. Findings in the present study also indicate that pharmacological regulation on gut microbes can develop an anti-obesity strategy

    A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes.

    Get PDF
    Understanding the dynamics of endogenous protein-protein interactions in complex networks is pivotal in deciphering disease mechanisms. To enable the in-depth analysis of protein interactions in chromatin-associated protein complexes, we have previously developed a method termed RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins). Here, we present a quantitative multiplexed method (qPLEX-RIME), which integrates RIME with isobaric labelling and tribrid mass spectrometry for the study of protein interactome dynamics in a quantitative fashion with increased sensitivity. Using the qPLEX-RIME method, we delineate the temporal changes of the Estrogen Receptor alpha (ERα) interactome in breast cancer cells treated with 4-hydroxytamoxifen. Furthermore, we identify endogenous ERα-associated proteins in human Patient-Derived Xenograft tumours and in primary human breast cancer clinical tissue. Our results demonstrate that the combination of RIME with isobaric labelling offers a powerful tool for the in-depth and quantitative characterisation of protein interactome dynamics, which is applicable to clinical samples

    Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation

    Get PDF
    Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study demonstrates the utility of FAIRE-seq in providing a global view of cell type–specific regulatory elements in the genome and in identifying transcriptional regulators of adipocyte differentiation
    corecore