77 research outputs found

    Deep Chandra observations of TeV binaries I: LSI +61 303

    Get PDF
    We report on a 95ks Chandra observation of the TeV emitting High Mass X-ray Binary LSI +61 303, using the ACIS-S camera in Continuos Clocking mode to search for a possible X-ray pulsar in this system. The observation was performed while the compact object was passing from phase 0.94 to 0.98 in its orbit around the Be companion star (hence close to the apastron passage). We did not find any periodic or quasi-periodic signal (at this orbital phase) in a frequency range of 0.005-175 Hz. We derived an average pulsed fraction 3 sigma upper limit for the presence of a periodic signal of ~10% (although this limit is strongly dependent on the frequency and the energy band), the deepest limit ever reached for this object. Furthermore, the source appears highly variable in flux and spectrum even in this very small orbital phase range, in particular we detect two flares, lasting thousands of seconds, with a very hard X-ray spectrum with respect to the average source spectral distribution. The X-ray pulsed fraction limits we derived are lower than the pulsed fraction of any isolated rotational-powered pulsar, in particular having a TeV counterpart. In this scenario most of the X-ray emission of LSI +61 303 should necessarily come from the interwind or inner-pulsar wind zone shock rather than from the magnetosphere of the putative pulsar. Furthermore, we did not find evidence for the previously suggested extended X-ray emission (abridged).Comment: 9 pages, 6 figures, MNRAS in pres

    Gamma-rays from binary system with energetic pulsar and Be star with aspherical wind: PSR B1259-63/SS2883

    Get PDF
    At least one massive binary system containing an energetic pulsar, PSR B1259-63/SS2883, has been recently detected in the TeV gamma-rays by the HESS telescopes. These gamma-rays are likely produced by particles accelerated in the vicinity of the pulsar and/or at the pulsar wind shock, in comptonization of soft radiation from the massive star. However, the process of gamma-ray production in such systems can be quite complicated due to the anisotropy of the radiation field, complex structure of the pulsar wind termination shock and possible absorption of produced gamma-rays which might initiate leptonic cascades. In this paper we consider in detail all these effects. We calculate the gamma-ray light curves and spectra for different geometries of the binary system PSR B1259-63/SS2883 and compare them with the TeV gamma-ray observations. We conclude that the leptonic IC model, which takes into account the complex structure of the pulsar wind shock due to the aspherical wind of the massive star, can explain the details of the observed gamma-ray light curve.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    INTEGRAL observation of hard X-ray variability of the TeV binary LS5039 / RX J1826.2-1450

    Full text link
    LS 5039/RX J1826.2-1450 is one of the few High Mass X-ray binary systems from which radio and high energy TeV emission has been observed. Moreover, variability of the TeV emission with orbital period was detected. We investigate the hard X-ray (25 - 200keV) spectral and timing properties of the source with the monitoring IBIS/ISGRI instrument on-board the INTEGRAL satellite. We present the analysis of INTEGRAL observations for a total of about 3 Msec exposure time, including both public data and data from the Key Programme. We search for flux and spectral variability related to the orbital phase. The source is observed to emit from 25 up to 200 keV and the emission is concentrated around inferior conjunction. Orbital variability in the hard X-ray band is detected and established to be in phase with the orbitally modulated TeV emission observed with H.E.S.S. For this energy range we determine an average flux for the inferior conjunction phase interval of (3.54±2.30)×1011(3.54 \pm 2.30) \times 10^{-11} erg cm2^{-2} s1^{-1}, and a flux upper limit for the superior conjunction phase interval of 1.45×10111.45 \times 10^{-11} erg cm2^{-2} s1^{-1} (90% conf. level respectively). The spectrum for the inferior conjunction phase interval follows a power law with an index Γ=2.00.2+0.2\Gamma = 2.0^{+0.2}_{-0.2} (90% conf. level).Comment: 4 pages, 4 figures, accepted by A&

    Deep Chandra observations of TeV binaries II: LS 5039

    Get PDF
    We report on Chandra observations of the TeV emitting High Mass X-ray Binary LS 5039, for a total exposure of ~70ks, using the ACIS-S camera in Continuos Clocking mode to search for a possible X-ray pulsar in this system. We did not find any periodic or quasi-periodic signal in the 0.3-0.4 and 0.75-0.9 orbital phases, and in a frequency range of 0.005-175 Hz. We derived an average pulsed fraction 3sigma upper limit for the presence of a periodic signal of ~15% (depending on the frequency and the energy band), the deepest limit ever reached for this object. If the X-ray emission of LS 5039 is due (at least in part) to a rotational powered pulsar, the latter is either spinning faster than ~5.6 ms, or having a beam pointing away from our line of sight, or contributing to ~15% of the total X-ray emission of the system in the orbital phases we observed.Comment: 9 pages, 5 figures, MNRAS in pres

    The magnetic field and the location of the TeV emitter in Cygnus X-1 and LS 5039

    Full text link
    Cygnus X-1 and LS 5039 are two X-ray binaries observed at TeV energies. Both sources are compact systems, contain jet-like (radio) structures, and harbor very luminous O stars. A TeV signal has been found around the superior conjunction of the compact object in both objects, when the highest gamma-ray opacities are expected. We investigate the implications of finding TeV emission from Cygnus X-1 and LS 5039 around the superior conjunction, since this can give information on the system magnetic field and the location of the TeV emitter. Using the very high-energy spectra and fluxes observed around the superior conjunction in Cygnus X-1 and LS 5039, we compute the absorbed luminosity that is caused by pair creation in the stellar photon field for different emitter positions with respect to the star and the observer line of sight. The role of the magnetic field and electromagnetic cascading are discussed. For the case of inefficient electromagnetic cascading, the expected secondary synchrotron fluxes are compared with the observed ones at X-ray energies. We find that, in Cygnus X-1 and LS 5039, either the magnetic field in the star surroundings is much smaller than the one expected for O stars or the TeV emitter is located at a distance >10^12 cm from the compact object. Our results strongly suggest that the TeV emitters in Cygnus X-1 and LS 5039 are located at the borders of the binary system and well above the orbital plane. This would not agree with those models for which the emitter is well inside the system, like the innermost-jet region (Cygnus X-1 and LS 5039; microquasar scenario), or the region between the pulsar and the primary star (LS 5039; standard pulsar scenario).Comment: A&A, in press, 4 pages, 3 figures, 1 table (minor changes

    Impact of the orbital uncertainties on the timing of pulsars in binary systems

    Full text link
    The detection of pulsations from an X-ray binary is an unambiguous signature of the presence of a neutron star in the system. When the pulsations are missed in the radio band, their detection at other wavelengths, like X-ray or gamma-rays, requires orbital demodulation, since the length of the observations are often comparable to, or longer than the system orbital period. The detailed knowledge of the orbital parameters of binary systems plays a crucial role in the detection of the spin period of pulsars, since any uncertainty in their determination translates into a loss in the coherence of the signal during the demodulation process. In this paper, we present an analytical study aimed at unveiling how the uncertainties in the orbital parameters might impact on periodicity searches. We find a correlation between the power of the signal in the demodulated arrival time series and the uncertainty in each of the orbital parameters. This correlation is also a function of the pulsar frequency. We test our analytical results with numerical simulations, finding good agreement between them. Finally, we apply our study to the cases of LS 5039 and LS I +61 303 and consider the current level of uncertainties in the orbital parameters of these systems and their impact on a possible detection of a hosted pulsar. We also discuss the possible appearance of a sideband ambiguity in real data. The latter can occur when, due to the use of uncertain orbital parameters, the power of a putative pulsar is distributed in frequencies lying nearby the pulsar period. Even if the appearance of a sideband is already a signature of a pulsar component, it may introduce an ambiguity in the determination of its period. We present here a method to solve the sideband issue.Comment: Accepted 2012 September 08 by MNRAS. The paper contains 18 figures and 5 table

    Long-term monitoring of the high-energy gamma-ray emission from LS I +61{\deg} 303 and LS 5039

    Get PDF
    The Fermi Large Area Telescope (LAT) reported the first definitive GeV detections of the binaries LS I +61\degree 303 and LS 5039 in the first year after its launch in June, 2008. These detections were unambiguous as a consequence of the reduced positional uncertainty and the detection of modulated gamma-ray emission on the corresponding orbital periods. An analysis of new data from the LAT, comprising 30 months of observations, identifies a change in the gamma-ray behavior of LS I +61\degree 303. An increase in flux is detected in March 2009 and a steady decline in the orbital flux modulation is observed. Significant emission up to 30GeV is detected by the LAT; prior datasets led to upper limits only. Contemporaneous TeV observations no longer detected the source, or found it -in one orbit- close to periastron, far from the phases at which the source previously appeared at TeV energies. The detailed numerical simulations and models that exist within the literature do not predict or explain many of these features now observed at GeV and TeV energies. New ideas and models are needed to fully explain and understand this behavior. A detailed phase-resolved analysis of the spectral characterization of LS I +61\degree 303 in the GeV regime ascribes a power law with an exponential cutoff spectrum along each analyzed portion of the system's orbit. The on-source exposure of LS 5039 is also substantially increased with respect to our prior publication. In this case, whereas the general gamma-ray properties remain consistent, the increased statistics of the current dataset allows for a deeper investigation of its orbital and spectral evolution.Comment: 12 pages, 13 figures, accepted for publication in Ap

    Fermi LAT Observations of LS I +61 303: First detection of an orbital modulation in GeV Gamma Rays

    Full text link
    This Letter presents the first results from the observations of LSI +61 303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 +/- 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 +/- 0.03(stat) +/- 0.07(syst) 10^{-6} ph cm^{-2} s^{-1}, with a cutoff at 6.3 +/- 1.1(stat) +/- 0.4(syst) GeV and photon index Gamma = 2.21 +/- 0.04(stat) +/- 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest the link between HE and VHE gamma rays is nontrivial.Comment: 7 pages, 5 figures, accepted for publication in ApJ Letters 21 July 200

    First bounds on the high-energy emission from isolated Wolf-Rayet binary systems

    Get PDF
    High-energy gamma-ray emission is theoretically expected to arise in tight binary star systems (with high mass loss and high velocity winds), although the evidence of this relationship has proven to be elusive so far. Here we present the first bounds on this putative emission from isolated Wolf-Rayet (WR) star binaries, WR 147 and WR 146, obtained from observations with the MAGIC telescope.Comment: (Authors are the MAGIC Collaboration.) Manuscript in press at The Astrophysical Journal Letter

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange
    corecore