48 research outputs found
Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens
BACKGROUND:Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. METHODOLOGY/PRINCIPAL FINDINGS:In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. CONCLUSIONS/SIGNIFICANCE:Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III)
Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model
The increasing rate in antibiotic-resistant bacterial strains has become an imperative health issue. Thus, pharmaceutical industries have focussed their efforts to find new potent, non-toxic compounds to treat bacterial infections. Antimicrobial peptides (AMPs) are promising candidates in the fight against antibiotic-resistant pathogens due to their low toxicity, broad range of activity and unspecific mechanism of action. In this context, bioinformatics' strategies can inspire the design of new peptide leads with enhanced activity. Here, we describe an artificial neural network approach, based on the AMP's physicochemical characteristics, that is able not only to identify active peptides but also to assess its antimicrobial potency. The physicochemical properties considered are directly derived from the peptide sequence and comprise a complete set of parameters that accurately describe AMPs. Most interesting, the results obtained dovetail with a model for the AMP's mechanism of action that takes into account new concepts such as peptide aggregation. Moreover, this classification system displays high accuracy and is well correlated with the experimentally reported data. All together, these results suggest that the physicochemical properties of AMPs determine its action. In addition, we conclude that sequence derived parameters are enough to characterize antimicrobial peptides
Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus
Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides
Discovery and Structure Activity Relationships of N Aryl 6 Aminoquinoxalines as Potent PFKFB3 Kinase Inhibitors
Energy and biomass production in cancer cells are largely supported by aerobic glycolysis in what is called the Warburg effect. The process is regulated by key enzymes, among which phosphofructokinase PFK 2 plays a significant role by producing fructose 2,6 biphosphate; the most potent activator of the glycolysis rate limiting step performed by phosphofructokinase PFK 1. Herein, the synthesis, biological evaluation and structure activity relationship of novel inhibitors of 6 phosphofructo 2 kinase fructose 2,6 biphosphatase amp; 8197;3 PFKFB3 , which is the ubiquitous and hypoxia induced isoform of PFK 2, are reported. X ray crystallography and docking were instrumental in the design and optimisation of a series of N aryl 6 aminoquinoxalines. The most potent representative, N 4 methanesulfonylpyridin 3 yl 8 3 methyl 1 benzothiophen 5 yl quinoxalin 6 amine, displayed an IC50 of 14 amp; 8197;nm for the target and an IC50 of 0.49 amp; 8197; amp; 956;m for fructose 2,6 biphosphate production in human colon carcinoma HCT116 cells. This work provides a new entry in the field of PFKFB3 inhibitors with potential for development in oncolog
Synthesis of amide and sulfonamide substituted N aryl 6 aminoquinoxalines as PFKFB3 inhibitors with improved physicochemical properties
In oncology, the Warburg effect describes the elevated production of energy by glycolysis in cancer cells. The ubiquitous and hypoxia induced 6 phosphofructo 2 kinase fructose 2,6 biphosphatase 3 PFKFB3 plays a noteworthy role in the regulation of glycolysis by producing fructose 2,6 biphosphate F 2,6 BP , a potent activator of the glycolysis rate limiting phosphofructokinase PFK 1. Series of amides and sulfonamides derivatives based on a N aryl 6 aminoquinoxaline scaffold were synthesized and tested for their inhibition of PFKFB3 in vitro in a biochemical assay as well as in HCT116 cells. The carboxamide series displayed satisfactory kinetic solubility and metabolic stability, and within this class, potent lead compounds with low nanomolar activity have been identified with a suitable profile for further in vivo evaluatio
Midkine is expressed and differentially processed during COPD exacerbations and ventilator-associated pneumonia associated with Staphylococcus aureus infection.
Staphylococcus aureus is sometimes isolated from the airways during acute exacerbations of chronic obstructive pulmonary disease (COPD) but more commonly recognized as a cause of ventilator-associated pneumonia (VAP). Antimicrobial proteins, among them midkine (MK), are an important part of innate immunity in the airways. In this study, the levels and possible processing of MK in relation to S. aureus infection of the airways were investigated, comparing COPD and VAP, thus comparing a state of disease with preceding chronic inflammation and remodeling (COPD) with acute inflammation (i.e. VAP). MK was detected in the small airways and alveoli of COPD lung tissue but less so in normal lung tissue. MK at below micromolar concentrations killed S. aureus in vitro. Proteolytic processing of MK by the staphylococcal metalloprotease AL but not cysteine protease SA, resulted in impaired bactericidal activity. Degradation was foremost seen in the COOH-terminal portion of the molecule that harbors high bactericidal activity. In addition, MK was detected in sputum from patients suffering from VAP caused by S. aureus but less so in sputum from COPD-exacerbations associated with the same bacterium. Recombinant MK was degraded more rapidly in sputum from the COPD patients than from the VAP patients and a greater proteolytic activity in COPD sputum was confirmed by zymography. Taken together, proteases of both bacteria and the host contribute to degradation of the antibacterial protein MK, resulting in an impaired defense of the airways, in particular in COPD where the state of chronic inflammation could be of importance