282 research outputs found

    Elevated level of some chemokines in plasma of gastric cancer patients

    Get PDF
    Introduction : Gastric cancer is one of the most common cancer-related causes of death. This is mainly due to the lack of good noninvasive method/biomarkers suitable for early-tumour diagnosis and planning of further therapy modalities. Chemokines play an important role in cancer progression and metastasis formation. In gastric cancer patients, clinical relevance of CXCL12 and CCL5 level has been postulated. Aim of the study : Efforts were undertaken to examine whether expanded chemokine range may be relevant for evaluation of preoperative staging of gastric cancer patients. Material and methods : Plasma from 66 gastric cancer patients and 11 healthy controls was obtained, and CCL2, CCL3, CCL4, CCL5, CXCL8, CXCL9, and CXCL10 levels were determined by flow cytometry FlexSet system. Results : In gastric cancer patients’ plasma an increased level of CCL2, CCL4, CCL5, CXCL8, CXCL9, and CXCL10 was observed. In the case of CCL2, CXCL9, and CXCL10, the chemokine levels correlated with advanced (III and IV in TNM classification) disease stage. In the case of CCL4, CCL5, and CXCL8, elevated levels were observed in all cancer patients in comparison to healthy donors. Conclusions : The accuracy of preoperative diagnosis in gastric cancer may include the monitoring of a wide range of chemokines in patients’ plasma. Increased levels of chemokines may warn that the disease is more advanced than conventional diagnostic procedures suggest

    Preoperative plasma level of IL-10 but not of proinflammatory cytokines is an independent prognostic factor in patients with gastric cancer

    Get PDF
    There have been many discrepant observations on the serum levels of cytokines in cancer patients and their prognostic value. The purpose of this study was to determine the plasma levels of pro- and anti-inflammatory cytokines and their clinical significance in a large group of patients with gastric carcinoma. The levels of tumour necrosis factor alpha (TNF α), interleukin-12p40 (IL-12p40), IL-12p70, IL-18, IL-10 and soluble TNF receptors I and II sTNF-Rs were investigated in the plasma of 136 consecutive patients with biopsy proven gastric cancer using specific enzymelinked immunoabsorbent assays (ELISA). Survival curves were estimated using the method of Kaplan and Meier and the differences in the survival rates were tested by the logrank test. For multivariate analysis of prognostic factors, the Cox proportional hazard model was used. Proinflammatory cytokines and sTNF-Rs were higher in the whole group of patients in comparison to healthy volunteers. IL-10 was elevated mostly in advanced disease. The increased levels of IL-10 (>10 pg/ml) were associated with significantly poorer survival of patients, while the levels of the other cytokines and sTNF-Rs showed no correlation with prognosis. The increased level of IL-10 is an independent unfavorable prognostic factor in patients with gastric cancer

    Transition metal containing particulate matter promotes Th1 and Th17 inflammatory response by monocyte activation in organic and inorganic compounds dependent manner

    Get PDF
    In recent years, a significant increase in the frequency of disorders caused by air pollutants has been observed. Here we asked whether transition metal-containing particulate matter (TMCPM), a component of air pollution, has an effect on the activity of human CD4+ T cell subsets (Th1, Th2, Th17, and Treg). Peripheral blood mononuclear cells (PBMC) from healthy donors were cultured with or without NIST (SRM 1648a—standard urban particulate matter purchased from the National Institute for Standards and Technology) and LAP (SRM 1648a particulate matter treated within 120 min with cold oxygen plasma) preparations of TMCPM, differing in organic compounds content. Data show that TMCPM treatment increased the level of CD4+ cells positive for IFN-γ and IL-17A, specific for Th1 and Th17 cells, respectively. Moreover, a substantial decrease in frequency of Foxp3 positive CD4+ cells was observed in parallel. This effect was more pronounced for NIST particles, containing more organic components, including endotoxin (LPS - lipopolysaccharide) and required the presence of monocytes. Inactivation of LPS by treatment of TMCPM with polymyxin B reduced the inflammatory response of monocytes and Th subsets but did not abolish this activity, suggesting a role of their inorganic components. In conclusion, treatment of human PBMC with TMCPM skews the balance of Th1/Th2 and Treg/Th17 cells, promoting polarization of CD4+ T cells into Th1 and Th17 subsets. This phenomenon requires activation of monocytes and depends on the organic and inorganic fractions, including endotoxin content in TMCPM, as significantly higher inflammatory response was observed for the NIST comparing to LAP. This observation may shed a new light on the role of TMCPM in development and exacerbation of allergies, inflammatory, and autoimmune disorders

    The role of CD44H molecule in the interactions between human monocytes and pancreatic adenocarcinoma-derived microvesicles

    Get PDF
    Introduction. CD44H is a transmembrane molecule important for cell-cell and cell-extracellular matrix interactions. In monocytes, CD44H is implicated in phagocytosis of particles coated by hyaluronan (HA). HA fragments were shown to induce chemokine secretion by monocytes. Tumour derived microvesicles (TMVs), which are small membrane fragments derived from tumour cells can carry fragments of HA. The aim of the study was to examine whether monocyte’s CD44H is involved in the engulfment of pancreatic adenocarcinoma-derived microvesicles and in the production of chemokines induced by TMVs. Materials and methods. TMVs engulfment and chemokines’ secretion stimulated with TMVs were determined in control human monocytes and cells incubated with anti-CD44H monoclonal antibody (mAb) by flow cytometry and ELISA, respectively. Phosphorylation of STAT3, transcription factor essential for chemokines’ production and CD44 signal transduction, was determined by Western blotting. Results. Blocking of CD44H by anti-CD44H mAb on monocytes decreased the engulfment of TMVs and thesecretion of CCL4 and CCL5, but had no effect on CCL2, CCL3 and CXCL8. STAT-3 phosphorylation inmonocytes incubated with TMVs after CD44 blocking was also reduced. Conclusion. The results suggest that tumour-derived microvesicles (TMVs) may carry bioactive cargo(s) which induces STAT3 dependent signalling pathway in human monocytes via CD44 molecules

    T Lymphocyte-Derived Exosomes Transport MEK1/2 and ERK1/2 and Induce NOX4-Dependent Oxidative Stress in Cardiac Microvascular Endothelial Cells

    Full text link
    Background: Activation of endothelial cells by inflammatory mediators secreted by CD4+ T lymphocytes plays a key role in the inflammatory response. Exosomes represent a specific class of signaling cues transporting a mixture of proteins, nucleic acids, and other biomolecules. So far, the impact of exosomes shed by T lymphocytes on cardiac endothelial cells remained unknown. Methods and results: Supernatants of CD4+ T cells activated with anti-CD3/CD28 beads were used to isolate exosomes by differential centrifugation. Activation of CD4+ T cells enhanced exosome production, and these exosomes (CD4-exosomes) induced oxidative stress in cardiac microvascular endothelial cells (cMVECs) without affecting their adhesive properties. Furthermore, CD4-exosome treatment aggravated the generation of mitochondrial reactive oxygen species (ROS), reduced nitric oxide (NO) levels, and enhanced the proliferation of cMVECs. These effects were reversed by adding the antioxidant apocynin. On the molecular level, CD4-exosomes increased NOX2, NOX4, ERK1/2, and MEK1/2 in cMVECs, and ERK1/2 and MEK1/2 proteins were found in CD4-exosomes. Inhibition of either MEK/ERK with U0126 or ERK with FR180204 successfully protected cMVECs from increased ROS levels and reduced NO bioavailability. Treatment with NOX1/4 inhibitor GKT136901 effectively blocked excessive ROS and superoxide production, reversed impaired NO levels, and reversed enhanced cMVEC proliferation triggered by CD4-exosomes. The siRNA-mediated silencing of Nox4 in cMVECs confirmed the key role of NOX4 in CD4-exosome-induced oxidative stress. To address the properties of exosomes under inflammatory conditions, we used the mouse model of CD4+ T cell-dependent experimental autoimmune myocarditis. In contrast to exosomes obtained from control hearts, exosomes obtained from inflamed hearts upregulated NOX2, NOX4, ERK1/2, MEK1/2, increased ROS and superoxide levels, and reduced NO bioavailability in treated cMVECs, and these changes were reversed by apocynin. Conclusion: Our results point to exosomes as a novel class of bioactive factors secreted by CD4+ T cells in immune response and represent potential important triggers of NOX4-dependent endothelial dysfunction. Neutralization of the prooxidative aspect of CD4-exosomes could open perspectives for the development of new therapeutic strategies in inflammatory cardiovascular diseases

    Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages

    Get PDF
    BACKGROUND: Tumour-derived microvesicles (TMVs) are important players in tumour progression, modulating biological activity of immune cells e.g. lymphocytes, monocytes and macrophages. This phenomenon is particularly interesting in the progression of colon cancer, as macrophages in this type of tumour are relevant for the recovery processes. In the present study, the role of colon cancer cell-derived microvesicles in monocyte differentiation and activity profile (polarization) was investigated. METHODS: Monocyte-derived macrophages (MDM) were differentiated in vitro in the presence of TMVs obtained from colon cancer: Caco-2, SW620, LoVo or SW480 cell lines and analysed according to their morphology and biological functions, as defined by cytokine secretion, reactive oxygen intermediate (ROI) production and cytotoxic activity against respective colon cancer cells. RESULTS: Monocytes differentiated with TMVs exhibited morphological and phenotypical characteristics of macrophages. An early contact (beginning with the first day of the in vitro culture) of monocytes with TMVs resulted in increased IL-10 secretion and only slightly elevated TNF release. Early, or prolonged contact resulted in low ROI production and low cytotoxicity against tumour cells. On the other hand, late contact of MDM with TMVs, stimulated MDM to significant TNF and IL-12 secretion, ROI production and enhanced cytotoxicity against tumour cells in vitro. In addition, differences in MDM response to TMVs from different cell lines were observed (according to cytokine secretion, ROI production and cytotoxicity against tumour cells in vitro). Biological activity, STATs phosphorylation and microRNA profiling of MDMs indicated differences in their polarization/activation status which may suggest mixed polarization type M1/M2 with the predominance of proinflammatory cells after late contact with TMVs. CONCLUSIONS: Macrophage activity (polarization status) may be regulated by contact with not only tumour cells but also with TMVs. Their final polarization status depends on the contact time, and probably on the vesicle “cargo”, as signified by the distinct impact of TMVs which enabled the switching of MDM maturation to regulatory macrophages
    • …
    corecore