58 research outputs found

    Reproductive plasticity of the American mink Mustela vison in Belarus

    Full text link

    Toads Bufo spp. in the diets of mustelid predators in Belarus

    Full text link

    Contemporary genetic structure, phylogeography and past demographic processes of wild boar <i>Sus scrofa</i> population in central and eastern Europe

    Get PDF
    The wild boar (Sus scrofa) is one of the most widely distributed mammals in Europe. Its demography was affected by various events in the past and today populations are increasing throughout Europe. We examined genetic diversity, structure and population dynamics of wild boar in Central and Eastern Europe. MtDNA control region (664 bp) was sequenced in 254 wild boar from six countries (Poland, Hungary, Belarus, Ukraine, Moldova and the European part of Russia). We detected 16 haplotypes, all known from previous studies in Europe; 14 of them belonged to European 1 (E1) clade, including 13 haplotypes from E1-C and one from E1-A lineages. Two haplotypes belonged respectively to the East Asian and the Near Eastern clade. Both haplotypes were found in Russia and most probably originated from the documented translocations of wild boar. The studied populations showed moderate haplotype (0.714 &#177;0.023) and low nucleotide diversity (0.003 &#177;0.002). SAMOVA grouped the genetic structuring of Central and Eastern European wild boar into three subpopulations, comprising of: (1) north-eastern Belarus and the European part of Russia, (2) Poland, Ukraine, Moldova and most of Belarus, and (3) Hungary. The multimodal mismatch distribution, Fu's Fs index, Bayesian skyline plot and the high occurrence of shared haplotypes among populations did not suggest strong demographic fluctuations in wild boar numbers in the Holocene and pre-Holocene times. This study showed relatively weak genetic diversity and structure in Central and Eastern European wild boar populations and underlined gaps in our knowledge on the role of southern refugia and demographic processes shaping genetic diversity of wild boar in this part of Europe

    Widespread, long-term admixture between grey wolves and domestic dogs across Eurasia and its implications for the conservation status of hybrids

    Get PDF
    Hybridisation between a domesticated species and its wild ancestor is an important conservation problem, especially if it results in the introgression of domestic gene variants into wild species. Nevertheless, the legal status of hybrids remains unregulated, partially because of the limited understanding of the hybridisation process and its consequences. The occurrence of hybridisation between grey wolves and domestic dogs is well-documented from different parts of the wolf geographic range, but little is known about the frequency of hybridisation events, their causes and the genetic impact on wolf populations. We analysed 61K SNPs spanning the canid genome in wolves from across Eurasia and North America and compared that data to similar data from dogs to identify signatures of admixture. The haplotype block analysis, which included 38 autosomes and the X chromosome, indicated the presence of individuals of mixed wolf-dog ancestry in most Eurasian wolf populations, but less admixture was present in North American populations. We found evidence for male-biased introgression of dog alleles into wolf populations, but also identified a first-generation hybrid resulting from mating between a female dog and a male wolf. We found small blocks of dog ancestry in the genomes of 62% Eurasian wolves studied and melanistic individuals with no signs of recent admixed ancestry, but with a dog-derived allele at a locus linked to melanism. Consequently, these results suggest that hybridisation has been occurring in different parts of Eurasia on multiple timescales and is not solely a recent phenomenon. Nevertheless, wolf populations have maintained genetic differentiation from dogs, suggesting that hybridisation at a low frequency does not diminish distinctiveness of the wolf gene pool. However, increased hybridisation frequency may be detrimental for wolf populations, stressing the need for genetic monitoring to assess the frequency and distribution of individuals resulting from recent admixture

    Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore

    Get PDF
    Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n=32, Carpathian Mountains n=7, Dinaric-Balkan n=9, Ukrainian Steppe n=11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.201

    North-south differentiation and a region of high diversity in European wolves (Canis lupus)

    Get PDF
    European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part
    • …
    corecore