792 research outputs found

    Generalized h-index for Disclosing Latent Facts in Citation Networks

    Full text link
    What is the value of a scientist and its impact upon the scientific thinking? How can we measure the prestige of a journal or of a conference? The evaluation of the scientific work of a scientist and the estimation of the quality of a journal or conference has long attracted significant interest, due to the benefits from obtaining an unbiased and fair criterion. Although it appears to be simple, defining a quality metric is not an easy task. To overcome the disadvantages of the present metrics used for ranking scientists and journals, J.E. Hirsch proposed a pioneering metric, the now famous h-index. In this article, we demonstrate several inefficiencies of this index and develop a pair of generalizations and effective variants of it to deal with scientist ranking and with publication forum ranking. The new citation indices are able to disclose trendsetters in scientific research, as well as researchers that constantly shape their field with their influential work, no matter how old they are. We exhibit the effectiveness and the benefits of the new indices to unfold the full potential of the h-index, with extensive experimental results obtained from DBLP, a widely known on-line digital library.Comment: 19 pages, 17 tables, 27 figure

    STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization

    Full text link
    Accurate prediction of the transmission of epidemic diseases such as COVID-19 is crucial for implementing effective mitigation measures. In this work, we develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously. We construct a 3-way spatio-temporal tensor (location, attribute, time) of case counts and propose a nonnegative tensor factorization with latent epidemiological model regularization named STELAR. Unlike standard tensor factorization methods which cannot predict slabs ahead, STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations of a widely adopted epidemiological model. We use latent instead of location/attribute-level epidemiological dynamics to capture common epidemic profile sub-types and improve collaborative learning and prediction. We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic. Finally, we evaluate the predictive ability of our method and show superior performance compared to the baselines, achieving up to 21% lower root mean square error and 25% lower mean absolute error for county-level prediction.Comment: AAAI 202

    First results on the performance of the CMS global calorimeter trigger

    Get PDF
    The CMS Global Calorimeter Trigger (GCT) uses data from the CMS calorimeters to compute a number kinematical quantities which characterize the LHC event. The GTC output is used by the Global Trigger (GT) along with data from the Global Muon Trigger (GMT) to produce the Level-1 Accept (L1A) decision. The design for the current GCT system commenced early in 2006. After a rapid development phase all the different GCT components have been produced and a large fraction of them have been installed at the CMS electronics cavern (USC-55). There the GCT system has been under test since March 2007. This paper reports results from tests which took place at the USC-55. Initial tests aimed to test the integrity of the GCT data and establish that the proper synchronization had been achieved both internally within GCT as well as with the Regional Calorimeter Trigger (RCT) which provides the GCT input data and with GT which receives the GCT results. After synchronization and data integrity had been established, Monte Carlo Events with electrons in the final state were injected at the GCT inputs and were propagated to the GCT outputs. The GCT output was compared with the predictions of the GCT emulator model in the CMS Monte Carlo and were found to be identical

    Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite

    Get PDF
    The excitation of quasi-particles near the extrema of the electronic band structure is a gateway to electronic phase transitions in condensed matter. In a many-body system, quasi-particle dynamics are strongly influenced by the electronic single-particle structure and have been extensively studied in the weak optical excitation regime. Yet, under strong optical excitation, where light fields coherently drive carriers, the dynamics of many-body interactions that can lead to new quantum phases remain largely unresolved. Here, we induce such a highly non-equilibrium many-body state through strong optical excitation of charge carriers near the van Hove singularity in graphite. We investigate the system's evolution into a strongly-driven photo-excited state with attosecond soft X-ray core-level spectroscopy. Surprisingly, we find an enhancement of the optical conductivity of nearly ten times the quantum conductivity and pinpoint it to carrier excitations in flat bands. This interaction regime is robust against carrier-carrier interaction with coherent optical phonons acting as an attractive force reminiscent of superconductivity. The strongly-driven non-equilibrium state is markedly different from the single-particle structure and macroscopic conductivity and is a consequence of the non-adiabatic many-body state

    Performance of the CMS Global Calorimeter Trigger

    Get PDF
    The CMS Global Calorimeter Trigger system performs a wide-variety of calorimeter data processing functions required by the CMS Level-1 trigger. It is responsible for finding and classifying jets and tau-jets, calculating total and missing transverse energy, total transverse energy identified within jets, sorting e/γ\gamma candidates, and calculating several quantities based on forward calorimetry for minimum-bias triggers. The system is based on high-speed serial optical links and large FPGAs. The system has provided CMS with calorimeter triggers during commissioning and cosmic runs throughout 2008. The performance of the system in validation tests and cosmic runs is presented here
    corecore