38 research outputs found

    Lactic Acid Bacteria Mediated Induction of Defense Enzymes To Enhance the Resistance in Tomato against Ralstonia Solanacearum Causing Bacterial Wilt

    Get PDF
    The biocontrol agent Lactic acid bacterium (LAB) was used against the bacterial wilt caused by Ralstonia solanacearum. The present investigation focuses on the role of defense related enzymes in imparting resistance to tomato plants against R. solanacearum. The LAB isolate was tested for its ability to induce the production of defense-related enzymes in treated tomato seedlings. Tomato seedlings were raised from LAB pretreated seeds, were challenge inoculated with R. solanacearum, harvested at different time intervals (0–72 h) and assayed for defense enzyme activity. The LAB treated seeds showed increase in germination percentage (6%) and seedling vigour index (259) compared with control. Treatment of tomato seedlings with LAB isolate induced a significant amount of Peroxidase (POX), Polyphenol oxidase (PPO), Phenylalanine ammonialyase (PAL), total phenolics and β-1,3-glucanase activities. The activities of PAL, POX, PPO and β-1,3-glucanase reached maximum at 24 h, 24 h, 32 h and 24 h respectively after challenge inoculation. Increased accumulation of phenolics was noticed in plants pre-treated with LAB. Native PAGE analyses of POX and PPO were carried out for the time course of enzyme activities and the isoforms of POX and PPO were examined. In field study, ten isolates of R. solanacearum treated plots yielded an average of 32.4–50 kg/m2 and LAB treated plots an average of 153.5 kg/m2. As compared to the control, LAB increased the yield by 15.3% (8.2 kg/m2) and the pathogen infected plants and pre-treated with LAB gave an average of 55% (28.3 kg/m2 compared to the infected plots). Field experiment results indicated that LAB exhibited 61.1% of disease reduction of bacterial wilt in tomato

    Immunity elicitors for induced resistance against the downy mildew pathogen in pearl millet

    Get PDF
    Pearl millet (Pennisetum glaucum (L.) R. Br.) is a globally important cereal whose production is severely constrained by downy mildew caused by Sclerospora graminicola (Sacc.). In this study, immunity eliciting properties of 3,5-dichloroanthranilic acid (DCA), Cell Wall Glucan (CWG), Lipopolysaccharide (LPS), and Glycinebetaine (GB) was deciphered through enzymatic and protein studies based on elicitor treatment activated defense mechanisms. Glycinebetaine, LPS, CWS and DCA elicited enzyme activities and gene expression of the defense enzymes, such as β-1,3-glucanase, phenylalanine ammonia lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), lipoxygenase (LOX) and defense protein hydroxyproline-rich glycoproteins (HRGPs). However, the speed and the extent of elicitation differed. High levels of enzyme activities and gene expression in elicitor-treated P. glaucum positively correlated with the increased downy mildew resistance. A very rapid and large changes in elicitor-treated seedlings, in contrast to the delayed, smaller changes in the untreated susceptible control seedlings suggests that the rate and magnitude of defense gene expression are important for effective manifestation of defense against pathogen. As compared to other elicitors and control, GB promoted increase in enzyme activities and gene expression, implicating that GB is a promising elicitor of downy mildew resistance in P. glaucum

    Molecular diversity of seed-borne Fusarium species associated with maize in India

    Get PDF
    A total of 106 maize seed samples were collected from different agro-climatic regions ofIndia. Sixty-two Fusarium isolates were recovered, 90% of which were identified as Fusarium verticillioidesbased on morphological and molecular characters. Use of the tef-1alpha gene corrected/refinedthe morphological species identifications of 11 isolates, and confirmed those of the remaining isolates. Genetic diversityamong the Fusarium isolates involved multilocus fingerprinting profiles by Inter Simple Sequence Repeats (ISSR) UPGMAand tef-1 alpha gene phenetic analyses; for which, we observed no significant differences among the isolates based ongeographic origin or fumonisin production; most of the subdivision related to species. Genotyping was performed on theF. verticillioides isolates, using 12 primer sets from the fumonisin pathway, to elucidate the molecular basis of fumonisinproduction or non-production. One fumonisin-negative isolate, UOMMF-16, was unable to amplify nine of the 12 fumonisincluster genes tested. We also used the CD-ELISA method to confirm fumonisin production for our 62 Fusariumisolates. Only 15 isolates were found to be fumonisin-negative. Interestingly, genotypic characterization revealed six isolateswith various gene deletion patterns that also tested positive for the production of fumonisins via CD-ELISA. Ourfindings confirm the importance of molecular studies for species delimitation, and for observing genetic and phenotypicdiversity, among the Fusaria.</p

    Resultative Compound Verb in Modern Chinese : A Comment on Imai(1985) and Lu(1986)

    Get PDF
    <p>A. API and DMO suppresses NF-κB DNA binding ability in HCT116 cells. HCT116 cells were treated with DMO and API at indicated doses, nuclear extracts were prepared, and 20 μg of the nuclear extract protein was used for the ELISA-based DNA-binding assay *p<0.05; **p<0.005). B & C. NF-κB responsive elements linked to a luciferase reporter gene were transfected with wild-type or dominant-negative IκB and transfected cancer cells were treated at indicated doses for 6 h and luciferase activity was measured as described in Materials and Methods section. All luciferase experiments were done in triplicate and repeated twice (*p<0.05; **p<0.005). D. API abrogates constitutive IκBα phosphorylation in dose-dependent manner in HCT116 cells. HCT116 cells were treated with different concentrations of API (0, 5, 10 and 20 μM) for 6 h and cytoplasmic extract was prepared. Lysates were resolved on SDS gel and electrotransferred to a nitrocellulose membrane and probed with anti-phospho-IκBα/IκBα. The blot was washed, exposed to HRP-conjugated secondary antibodies for 1 h, and finally examined by chemiluminescence. GAPDH was used as loading control.</p

    Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum

    No full text
    Abstract Bacterial wilt, caused by soilborne bacterium Ralstonia solanacearum, is one of the most severe diseases of tomato worldwide, and no successful control measures are available to date. In the present study, a sustainable alternative tool such as use of fungi from tomato rhizosphere is being utilized to combat the pathogen attack. The application of Trichoderma asperellum (T4 and T8) isolates delayed wilt development, effectively decreased the disease incidence, increased fruit yield, and improved plant growth promotion under field conditions. The T. asperellum treatment decreased the disease incidence by 51.06% (RS + T4) and 52.75% (RS + T8) in Bhoomishettihalli (BH) and 47.21% (RS + T4) and 46.83% (RS + T8) in Madanahalli (MH) plots, respectively when compared with the pathogen-treated plot in year 2014. Correspondent decreases in year 2015 were 50.69% (RS + T4) and 52.38% (RS + T8) in BH and 48.18% (RS + T4) and 49.22% (RS + T8) in MH plots. In year 2014, T. asperellum (T4 and T8) treatment enhanced the yield with 5.45 t/ha and 5.50 t/ha in BH plot and 6.66 t/ha and 6.93 t/ha in MH plot, respectively, when compared with infected plots. In year 2015, T. asperellum (T4 and T8) treatment enhanced the yield with 5.29 t/ha and 5.51 t/ha in BH plot and 5.82 t/ha and 5.66 t/ha in MH plot, respectively, when compared with infected plots. The disease control and yield enhancement were highest at T8, followed by T4. Increase in the level of peroxidase (POX), phenylalanine ammonium lyase (PAL), polyphenol oxidase (PPO), β-1,3-glucanase and total phenol activities at 12th, 10th, 14th, 12th, and 10th days, respectively, after pathogen inoculation was observed. This indicates the induction of plant resistance mechanism by T. asperellum against R. solanacearum in tomato plants under field conditions

    Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning

    No full text
    The increasing gap between the demand and productivity of maize crop is a point of concern for the food industry, and farmers. Its' susceptibility to diseases such as Turcicum Leaf Blight, and Rust is a major cause for reducing its production. Manual detection, and classification of these diseases, calculation of disease severity, and crop loss estimation is a time-consuming task. Also, it requires expertise in disease detection. Thus, there is a need to find an alternative for automatic disease detection, severity prediction, and crop loss estimation. The promising results of machine learning, and deep learning algorithms in pattern recognition, object detection, and data analysis motivate researchers to employ these techniques for disease detection, classification, and crop loss estimation in maize crop. The research works available in literature, have proven their potential in automatic disease detection using machine learning, and deep learning models. But, there is a lack none of these works a reliable and real-life labelled dataset for training these models. Also, none of the existing works focus on severity prediction, and crop loss estimation. The authors in this manuscript collect the real-life dataset labelled by plant pathologists. They propose a deep learning-based framework for pre-processing of dataset, automatic disease detection, severity prediction, and crop loss estimation. It uses the K-Means clustering algorithm for extracting the region of interest. Next, they employ the customized deep learning model ‘MaizeNet’ for disease detection, severity prediction, and crop loss estimation. The model reports the highest accuracy of 98.50%. Also, the authors perform the feature visualization using the Grad-CAM. Now, the proposed model is integrated with a web application to provide a user-friendly interface. The efficacy of the model in extracting the relevant features, a smaller number of parameters, low training time, high accuracy favors its importance as an assisting tool for plant pathology experts.The copyright for the associated web application ‘Maize-Disease-Detector’ is filed with diary number: 17006/2021-CO/SW

    Elicitation of resistance and associated defense responses in trichoderma hamatum induced protection against pearl millet downy mildew pathogen

    No full text
    Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid ( SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen
    corecore