27 research outputs found

    Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence

    Full text link

    Pharmacogenetics in schizophrenia: a review of clozapine studies

    Full text link

    Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol-atmosphere-ocean model over the Mediterranean

    No full text
    The present study investigates the radiative effects of dust aerosols in the Mediterranean region during summer 2012 using a coupled regional aerosol-atmosphere-ocean model (CNRM-RCSM5). A prognostic aerosol scheme, including desert dust, sea salt, organic, black-carbon and sulphate particles, has been integrated to CNRM-RCSM5 in addition to the atmosphere, land surface and ocean components. An evaluation of this aerosol scheme of CNRM-RCSM5, and especially of the dust aerosols, has been performed against in situ and satellite measurements, showing its ability to reproduce the spatial and temporal variability of aerosol optical depth (AOD) over the Mediterranean region in summer 2012. The dust vertical and size distributions have also been evaluated against observations from the TRAQA/ChArMEx campaign. Three simulations have been carried out for summer 2012 with CNRM-RCSM5, including the full prognostic aerosol scheme, only monthly-averaged AOD means from the aerosol scheme or no aerosols at all, in order to focus on the radiative effects of dust particles and the role of the prognostic scheme. Surface short-wave aerosol radiative forcing variability is found to be more than twice as high over regions affected by dust aerosols, when using a prognostic aerosol scheme instead of monthly AOD means. In this case downward surface solar radiation is also found to be better reproduced according to a comparison with several stations across the Mediterranean. A composite study over 14 stations across the Mediterranean, designed to identify days with high dust AOD, also reveals the improvement of the representation of surface temperature brought by the use of the prognostic aerosol scheme. Indeed the surface receives less radiation during dusty days, but only the simulation using the prognostic aerosol scheme is found to reproduce the observed intensity of the dimming and warming on dusty days. Moreover, the radiation and temperature averages over summer 2012 are also modified by the use of prognostic aerosols, mainly because of the differences brought in short-wave aerosol radiative forcing variability. Therefore this first comparison over summer 2012 highlights the importance of the choice of the representation of aerosols in climate models.Peer Reviewe

    Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean

    No full text
    The present study investigates the effects of aerosols on the Mediterranean climate daily variability during summer 2012. Simulations have been carried out using the coupled regional climate system model CNRM-RCSM5 which includes prognostic aerosols, namely desert dust, sea salt, organic, black-carbon and sulfate particles, in addition to the atmosphere, land surface and ocean components. An evaluation of the dust aerosol scheme of CNRM-RCSM5 has been performed against in-situ and satellite measurements. This scheme shows its ability to reproduce the spatial and temporal variability of aerosol optical depth (AOD) over the Mediterranean region in summer 2012. Observations from the TRAQA/ChArMEx campaign also show that the model correctly represents dust vertical and size distributions. Thus CNRM-RCSM5 can be used for aerosol–climate studies over the Mediterranean. Here we focus on the effects of dust particles on surface temperature and radiation daily variability. Surface shortwave aerosol radiative forcing variability is found to be more than twice higher over regions affected by dust aerosols, when using a prognostic aerosol scheme instead of a monthly climatology. In this case downward surface solar radiation is also found to be better reproduced according to a comparison with several stations across the Mediterranean. Moreover, the radiative forcing due to the dust outbreaks also causes an extra cooling in land and sea surface temperatures. A composite study has been carried out for 14 stations across the Mediterranean to identify more precisely the differences between dusty days and the set of all the days. Observations show that dusty days receive less radiation at the surface and are warmer than average because of southwesterly fluxes often generating dust outbreaks. Only the simulation using the prognostic aerosol scheme is found to reproduce the observed intensity of the dimming and warming on dusty days. Otherwise, the dimming is underestimated and the warming overestimated.Peer Reviewe

    The 5' untranslated region of the serotonin receptor 2C pre-mRNA generates miRNAs and is expressed in non-neuronal cells

    Get PDF
    The serotonin receptor 2C (HTR2C) gene encodes a G protein-coupled receptor that is exclusively expressed in neurons. Here, we report that the 5' untranslated region of the receptor pre-mRNA as well as its hosted miRNAs is widely expressed in non-neuronal cell lines. Alternative splicing of HTR2C is regulated by MBII-52. MBII-52 and the neighboring MBII-85 cluster are absent in people with Prader-Willi syndrome, which likely causes the disease. We show that MBII-52 and MBII-85 increase expression of the HTR2C 5' UTR and influence expression of the hosted miRNAs. The data indicate that the transcriptional unit expressing HTR2C is more complex than previously recognized and likely deregulated in Prader-Willi syndrome.This work was supported by NIH RO1 GM083187, P20RR020171 to SS; GM079549 to RS and JS; Binational Science Foundation (BSF), USA-Israel, transformative Grant, #2010508, to SS and RS. EE and AP were supported by the Spanish Ministry of Science with grant BIO2011-23920 and by Sandra Ibarra Foundation for Cancer with grant FSI 2011-03

    Gene expression predictions and networks in natural populations supports the omnigenic theory

    No full text
    Background: Recent literature on the differential role of genes within networks distinguishes core from peripheral genes. If previous works have shown contrasting features between them, whether such categorization matters for phenotype prediction remains to be studied.Results: We measured 17 phenotypic traits for 241 cloned genotypes from a Populus nigra collection, covering growth, phenology, chemical and physical properties. We also sequenced RNA for each genotype and built co-expression networks to define core and peripheral genes. We found that cores were more differentiated between populations than peripherals while being less variable, suggesting that they have been constrained through potentially divergent selection. We also showed that while cores were overrepresented in a subset of genes statistically selected for their capacity to predict the phenotypes (by Boruta algorithm), they did not systematically predict better than peripherals or even random genes.Conclusion: Our work is the first attempt to assess the importance of co-expression network connectivity in phenotype prediction. While highly connected core genes appear to be important, they do not bear enough information to systematically predict better quantitative traits than other gene sets.Université Fédérale de ToulouseUne approche de biologie intégrative pour améliorer le peuplier en vue de sa valorisation en bio-raffinerie grâce à une meilleure compréhension de l'architecture génétique de la production et de la qualité de la biomasse lignocellulosiqu
    corecore