304 research outputs found

    Optimization of thermochromic VO2 based structures with tunable thermal emissivity

    Get PDF
    In this paper, we design and simulate VO2/metal multilayers to obtain a large tunability of the thermal emissivity of infrared (IR) filters in the typical mid wave IR window of many infrared cameras. The multilayer structure is optimized to realise a low emissivity filter at high temperatures useful for military purposes. The values of tunability found for VO2/metal multilayers are larger than the value for a single thick layer of VO2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739489

    Detection of second-order nonlinear optical magnetization by mapping normalized Stokes parameters

    Get PDF
    A measurable magnetic (nonlocal) contribution to the second harmonic generation (SHG) of nonmagnetic materials is an intriguing issue related to chiral materials, such as biomolecules. Here we report the detection of an intensity-dependent optically induced magnetization of a chiral bacteriorhodopsin film under femtosecond pulse excitation (830 nm) and far from the material's resonance. The analysis of the pump intensity-dependent noncollinear SHG signal, by means of the polarization map of normalized Stokes parameters, allows one to improve the detection of the nonlinear optical magnetization M (2 omega) contribution to the SHG signal. (c) 2013 Optical Society of Americ

    Effects of Imiquimod on Hair Follicle Stem Cells and Hair Cycle Progression

    Get PDF
    Topical imiquimod (IMQ) application is widely used as a model for psoriasiform-like skin inflammation in mice. Although the effects on the epidermis are well characterized, it is unclear how IMQ affects hair follicles and cycling. Here we investigated how IMQ affects hair follicle stem cells and whether the timing of IMQ application influences the immune infiltrate. Our results show that IMQ application at mid and late telogen activated hair follicle stem cells leading to premature hair cycle entry (anagen), which was accompanied by massive infiltration of inflammatory macrophages and gamma delta T cells, whereas the number of the respective resident populations decreased. Interestingly, high resident macrophage numbers were present in Rag2−/− mice and were maintained after IMQ treatment explaining why IMQ-induced anagen was reduced. This could be rescued after macrophage depletion suggesting that resident macrophages inhibit whereas inflammatory infiltrating macrophages stimulate hair follicle stem cell activation. The expression of the anagen-inhibiting factor BMP-4 was reduced by IMQ treatment as well as the activating factors Wnt showing that IMQ-induced hair follicle stem cell activation occurs by a Wnt-independent mechanism involving inflammatory cytokines such as CCL2 and TNF-α. On the basis of our findings, we recommend conducting experiments with IMQ during mid and late telogen as the biggest differences in immune cell composition are observed

    EGF Receptor Signaling Is Essential for K-Ras Oncogene-Driven Pancreatic Ductal Adenocarcinoma

    Get PDF
    SummaryClinical evidence indicates that mutation/activation of EGF receptors (EGFRs) is mutually exclusive with the presence of K-RAS oncogenes in lung and colon tumors. We have validated these observations using genetically engineered mouse models. However, development of pancreatic ductal adenocarcinomas driven by K-Ras oncogenes are totally dependent on EGFR signaling. Similar results were obtained using human pancreatic tumor cell lines. EGFRs were also essential even in the context of pancreatic injury and absence of p16Ink4a/p19Arf. Only loss of p53 made pancreatic tumors independent of EGFR signaling. Additional inhibition of PI3K and STAT3 effectively prevented proliferation of explants derived from these p53-defective pancreatic tumors. These findings may provide the bases for more rational approaches to treat pancreatic tumors in the clinic

    Midinfrared thermal emission properties of finite arrays of gold dipole nanoantennas

    Get PDF
    We studied the far-field thermal emission properties of finite arrays of resonant gold dipole nanoantennas at equilibrium temperature. We numerically investigated the transition from the super-Planckian emission of the single resonant antenna to the sub-Planckian emission inherent to infinite periodic arrays. Increasing the number of unit cells of the array, the overall size of the system increases, and the relative emissivity quickly converges to values lower than the unity. Nevertheless, if the separation between nanoantennas in the array is small compared to the wavelength, the near-field interaction makes the emission of each unit cell multipolar. This opens the doors for additional tailoring of the emitted power and directionality of thermal radiation

    c-Jun Regulates Eyelid Closure and Skin Tumor Development through EGFR Signaling

    Get PDF
    AbstractTo investigate the function of c-Jun during skin development and skin tumor formation, we conditionally inactivated c-jun in the epidermis. Mice lacking c-jun in keratinocytes (c-junΔep) develop normal skin but express reduced levels of EGFR in the eyelids, leading to open eyes at birth, as observed in EGFR null mice. Primary keratinocytes from c-junΔep mice proliferate poorly, show increased differentiation, and form prominent cortical actin bundles, most likely because of decreased expression of EGFR and its ligand HB-EGF. In the absence of c-Jun, tumor-prone K5-SOS-F transgenic mice develop smaller papillomas, with reduced expression of EGFR in basal keratinocytes. Thus, using three experimental systems, we show that EGFR and HB-EGF are regulated by c-Jun, which controls eyelid development, keratinocyte proliferation, and skin tumor formation

    Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila

    Get PDF
    The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues
    corecore