3,505 research outputs found

    Predicting Antigenic Variants of Influenza A/H3N2 Viruses

    Get PDF
    Models based on amino acid changes in influenza hemagglutinin protein were compared to predict antigenic variants of influenza A/H3N2 viruses

    Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites

    No full text
    Highly aligned polyimide (PI) and PI/multi-walled carbon nanotubes (PI/MWCNTs) nanofibrous composites by incorporating poly(ethylene oxide) as the dispersing medium were fabricated using electrospinning technique. The morphology, mechanical, and electrical properties of the electrospun nanofibrous composites were investigated. Scanning electron microscope showed that the functionalized MWCNTs (f-MWCNTs) were well dispersed and oriented along the nanofiber axis. Analysis of electrical properties indicated a remarkable improvement on the alternating current conductivity by introduction of the aligned f-MWCNTs. Besides, with addition of 3 vol.% f-MWCNTs, the obvious enhancement of tensile modulus and strength was achieved. Thus, the electrospun PI/MWCNTs nanofibrous composites have great potential applications in multifunctional engineering materials

    Kerr-Sen Black Hole as Accelerator for Spinning Particles

    Full text link
    It has been proved that arbitrarily high-energy collision between two particles can occur near the horizon of an extremal Kerr black hole as long as the energy EE and angular momentum LL of one particle satisfies a critical relation, which is called the BSW mechanism. Previous researchers mainly concentrate on geodesic motion of particles. In this paper, we will take spinning particle which won't move along a timelike geodesic into our consideration, hence, another parameter ss describing the particle's spin angular momentum was introduced. By employing the Mathisson-Papapetrou-Dixon equation describing the movement of spinning particle, we will explore whether a Kerr-Sen black hole which is slightly different from Kerr black hole can be used to accelerate a spinning particle to arbitrarily high energy. We found that when one of the two colliding particles satisfies a critical relation between the energy EE and the total angular momentum JJ, or has a critical spinning angular momentum scs_c, a divergence of the center-of-mass energy EcmE_{cm} will be obtained.Comment: Latex,17 pages,1 figure,minor revision,accepted by PR

    Oceanic redox conditions during the terminal Cambrian extinction event

    Get PDF
    Marine animal diversity during the late Cambrian was reduced by a series of extinctions that have generally been attributed to oceanic anoxic events associated with positive carbon isotope excursions. Here we present carbon and uranium isotope ratios (δ13C and δ238U values) as proxies for global carbon cycle and oceanic redox conditions, respectively, from carbonate rocks of the Wa'ergang section, South China. The dataset spans an interval that includes the last major negative δ13C excursion (TOCE) of the Cambrian Period. The TOCE is a globally documented event, recovery from which corresponds to the terminal Cambrian extinction event. The δ13C and δ238U values covary through the section, shifting initially to lower values, with δ238U falling below the modern open-ocean seawater value from the start to the middle of the profile, followed by a shift to higher values towards the end of the Cambrian. Neither the co-occurrence of δ13C and δ238U negative excursions, nor the association of rising δ238U with extinction have been commonly reported. Here we argue that robust positive coupling of δ13C and δ238U relates to the existence of extensive intermediate reducing settings (from low-O2 suboxia to intermittent anoxia) during the late Cambrian alongside low atmospheric pO2 and a greenhouse climate. Similarly, a stepwise increase in the δ238U baseline in carbonates across the Ediacaran−Cambrian boundary is consistent with the growing importance of an intermediate reducing sink through that interval. We propose further that divergent trends in lower and upper ocean redox conditions could have driven the parallel isotope excursions. An expansion of intermediate reducing conditions, rather than persistent anoxic euxinia, is consistent with the recovery of δ13C and δ238U to higher values, as well as the presence of benthic fauna and shoreward extension of deeper-water fauna that may have had a greater tolerance against hypoxia

    Sex-Specific Correlations of Individual Heterozygosity, Parasite Load, and Scalation Asymmetry in a Sexually Dichromatic Lizard

    Get PDF
    Heterozygosity-fitness correlations (HFCs) provide insights into the genetic bases of individual fitness variation in natural populations. However, despite decades of study, the biological significance of HFCs is still under debate. In this study, we investigated HFCs in a large population of the sexually dimorphic lizard Takydromus viridipunctatus (Lacertidae). Because of the high prevalence of parasitism from trombiculid mites in this lizard, we expect individual fitness (i.e., survival) to decrease with increasing parasite load. Furthermore, because morphological asymmetry is likely to influence individuals\u27 mobility (i.e., limb asymmetry) and male biting ability during copulation (i.e., head asymmetry) in this species, we also hypothesize that individual fitness should decrease with increasing morphological asymmetry. Although we did not formally test the relationship between morphological asymmetry and fitness in this lizard, we demonstrated that survival decreased with increasing parasite load using a capture-mark-recapture data set. We used a separate sample of 140 lizards to test the correlations between individual heterozygosity (i.e., standardized mean d2 and HL based on 10 microsatellite loci) and the two fitness traits (i.e., parasite load and morphological asymmetry). We also evaluated and excluded the possibility that single-locus effects produced spurious HFCs. Our results suggest male-only, negative correlations between individual heterozygosity and parasite load and between individual heterozygosity and asymmetry, suggesting sex-specific, positive HFCs. Male T. viridipunctatus with higher heterozygosity tend to have lower parasite loads (i.e., higher survival) and lower asymmetry, providing a rare example of HFC in reptiles

    Progress of lymphocyte activation gene 3 and programmed cell death protein 1 antibodies for cancer treatment: A review

    Get PDF
    The application of immune checkpoint inhibitors has proven to be an effective treatment for cancer. Immune checkpoints such as programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin-3 (TIM-3), T-cell immunoglobulin and ITIM domain (TIGIT), and lymphocyte activation gene-3 (LAG-3) have received extensive attention, and the efficacy of antibodies or inhibitors against these checkpoints (either alone or in combination) has been evaluated in many tumors. This paper provides a brief overview of the PD-1 and LAG-3 checkpoints, and then shifts focus to the combined use of PD-1 and LAG-3 antibodies in both in vivo and in vitro experiments. In the in vitro experiments, we examined the correlation between the expression and activation of these inhibitors on T cells, and also assessed toxicity in animals in preparation for in vivo experiments. The effects of the combined use of PD-1 and LAG-3 antibodies were then summarized in animal models of melanoma, MC38 carcinoma, and other tumors. In clinical studies, the combined application of these antibodies was assessed in patients with melanoma, colorectal, breast, and renal cell cancers, as well as other solid tumors. In general, the combination of PD-1 and LAG-3 antibodies has shown promising results in both in vivo and in vitro studies
    corecore