624 research outputs found
Binding of hypernuclei, and phtoproduction of -hypernuclei in the latest quark-meson coupling model
We study the binding of hypernuclei based on the latest version of
quark-meson coupling model, and estimate the phtoproduction cross sections for
the C()B reaction using the bound
spinors obtained in the model.Comment: 6 pages, 3 figures, Talk given at (Pre-symposium in) Sendai
International Symposium on Strangeness in Nuclear and Hadronic Systems
(SENDAI08), December (14)15-18, 2008, Tohoku Univ., Japa
Assessing labour mobility in marine fishing operations in Karnataka
Mobility of labour across the country continues as a major source of labour supply in ensuring economic development across all sectors including the primary sector. The migrant labour in search of better employment emancipates better living conditions through meaningful employment and better financial status. The coastal states of Maharashtra with commendable marine fish landings provides states with commendable marine fish landings provide ample opportunities for migrant fishing labour across the year. The migrant labors are involved in harvest and post harvest operations. The present study tries to assess the major factors leading to labour migration and its effect in the state of Karnataka state. About 100 respondents were met for a primary survey and result reveals that the migration leads to the increase in savings. Majority (57 percent) of the respondents were youth (Below 30). Most respondents completed high school levels of education. The respondents migrated from 5 different states with majority from Jharkhand (36%), Assam (23%) and Orissa (13%) to Mangalore district in Karnataka and the 54 percent respondents migrated in the year 2000. Garrett ranking method assessed the main reason and problems of migration and also used to find the effect of migration on socioeconomic status. The main reason for migration is the low income and the major difficulty during migration was the difficulty in language. The major achievement of the migrant labour had been the quality education provided to their children
Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure
Metabarcoding diet analysis has become a valuable tool in animal ecology; however, co-amplified predator sequences are not generally used for anything other than to validate predator identity. Exemplified by the common vampire bat, we demonstrate the use of metabarcoding to infer predator population structure alongside diet assessments. Growing populations of common vampire bats impact human, livestock and wildlife health in Latin America through transmission of pathogens, such as lethal rabies viruses. Techniques to determine large scale variation in vampire bat diet and bat population structure would empower locality- and species-specific projections of disease transmission risks. However, previously used methods are not cost-effective and efficient for large scale applications. Using blood meal and faecal samples from common vampire bats from coastal, Andean and Amazonian regions of Peru, we showcase metabarcoding as a scalable tool to assess vampire bat population structure and feeding preferences. Dietary metabarcoding was highly effective, detecting vertebrate prey in 93.2% of the samples. Bats predominantly preyed on domestic animals, but fed on tapirs at one Amazonian site. In addition, we identified arthropods in 9.3% of samples, likely reflecting consumption of ectoparasites. Using the same data, we document mitochondrial geographic population structure in the common vampire bat in Peru. Such simultaneous inference of vampire bat diet and population structure can enable new insights into the interplay between vampire bat ecology and disease transmission risks. Importantly, the methodology can be incorporated into metabarcoding diet studies of other animals to couple information on diet and population structure
A Link between Integral Membrane Protein Expression and Simulated Integration Efficiency
Integral membrane proteins (IMPs) control the flow of information and nutrients across cell membranes, yet IMP mechanistic studies are hindered by difficulties in expression. We investigate this issue by addressing the connection between IMP sequence and observed expression levels. For homologs of the IMP TatC, observed expression levels vary widely and are affected by small changes in protein sequence. The effect of sequence changes on experimentally observed expression levels strongly correlates with the simulated integration efficiency obtained from coarse-grained modeling, which is directly confirmed using an in vivo assay. Furthermore, mutations that improve the simulated integration efficiency likewise increase the experimentally observed expression levels. Demonstration of these trends in both Escherichia coli and Mycobacterium smegmatis suggests that the results are general to other expression systems. This work suggests that IMP integration is a determinant for successful expression, raising the possibility of controlling IMP expression via rational design
Holo-Omics:Integrated Host-Microbiota Multi-omics for Basic and Applied Biological Research
From ontogenesis to homeostasis, the phenotypes of complex organisms are shaped by the bidirectional interactions between the host organisms and their associated microbiota. Current technology can reveal many such interactions by combining multi-omic data from both hosts and microbes. However, exploring the full extent of these interactions requires careful consideration of study design for the efficient generation and optimal integration of data derived from (meta)genomics, (meta) transcriptomics, (meta)proteomics, and (meta)metabolomics. In this perspective, we introduce the holo-omic approach that incorporates multi-omic data from both host and microbiota domains to untangle the interplay between the two. We revisit the recent literature on biomolecular host-microbe interactions and discuss the im-plementation and current limitations of the holo-omic approach. We anticipate that the application of this approach can contribute to opening new research avenues and discoveries in biomedicine, biotechnology, agricultural and aquacultural sciences, nature conservation, as well as basic ecological and evolutionary research.The authors thank the following for funding their research: The Danish National Research Foundation award to M.T.P.G. (DNRF143), Villum Fonden grant to M.T. P.G. (17417), Lundbeckfonden grant to A.A. (R250-2017-1351), Danish Council for Independent Research grants to A.A. (DFF 5051-00033) and M.T.L. (DFF 8022-00005), ERC Consolidator Grant toM. T.P.G. (681396-Extinction Genomics), The Norwegian Seafood Research Fund -FHF grant to M.T.P.G. and M.T.L. (901436-HoloFish), H2020 Marie Sklodowska-Curie Individual Fellowship grant toM.T.L. (745723-HappyFish) and the European Union's Horizon 2020 Research and Innovation Programme grant to M.T.P.G., A.A. and M.T.L. (Grant Agreement No 817729 -HoloFood). Furthermore, the authors would like to thank Rob Dunn for his input and discussions
25 years after Vi typhoid vaccine efficacy study, typhoid affects significant number of population in Nepal
Salmonella Typhi, first isolated in 1884, results in infection of the intestines and can end in death and disability. Due to serious adverse events post vaccination, whole cell killed vaccines have been replaced with new generation vaccines. The efficacy of Vi polysaccharide (ViPS) vaccine, a new generation, single-dose intramuscular typhoid vaccine was assessed in Nepal in 1987. However, despite the availability of ViPS vaccine for more than 25 years, Nepal has one of the highest incidence of typhoid fever. Therefore we collected information from hospitals in the Kathmandu Valley from over the past five years. There were 9901 enteric fever cases between January 2008 and July 2012. 1,881 of these were confirmed typhoid cases from five hospitals in the Kathmandu district. Approximately 70% of the cases involved children under 15 years old. 1281 cases were confirmed as S. Paratyphi. Vaccines should be prioritized for control of typhoid in conjunction with improved water and sanitation conditions in Nepal and in endemic countries of Asia and Africa
Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding
The interaction between agricultural production and wildlife can shape, and even condition, the functioning of both systems. In this study, we i) explored the degree to which a widespread European bat, namely the common bent-wing bat Miniopterus schreibersii, consumes crop-damaging insects at a continental scale, and ii) tested whether its dietary niche is shaped by the extension and type of agricultural fields. We employed a dual-primer DNA metabarcoding approach to characterize arthropod 16S and COI DNA sequences within bat faecal pellets collected across 16 Southern European localities, to first characterize the bat species’ dietary niche, second measure the incidence of agricultural pests across their ranges and third assess whether geographical dietary variation responds to climatic, landscape diversity, agriculture type and vegetation productivity factors. We detected 12 arthropod orders, among which lepidopterans were predominant. We identified >200 species, 44 of which are known to cause agricultural damage. Pest species were detected at all but one sampling site and in 94% of the analysed samples. Furthermore, the dietary diversity of M. schreibersii exhibited a negative linear relation with the area of intensive agricultural fields, thus suggesting crops restrict the dietary niche of bats to prey taxa associated with agricultural production within their foraging range. Overall, our results imply that M. schreibersii might be a valuable asset for biological pest suppression in a variety of agricultural productions and highlight the dynamic interplay between wildlife and agricultural systems.We thank the staff at the Danish National High-Throughput DNASequencing Centre for generating the sequencing data. Furthermore,we thank Kristine Bohmann and the three anonymous reviewers foredits and comments on the manuscript. AA was supported by The Danish Council for Independent Research (5051-00033), and OAwas supported by the Carlsberg Foundation’s Distinguished Postdoc-toral Fellowship (CF15-0619). SG was supported by a Marie Skło-dowska-Curie Individual Fellowship (655732)Peer reviewe
Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer
The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. Patterned mossy fiber activity induces rhythmic Golgi cell activity that is synchronized by shared parallel fiber input and by gap junctions. This leads to long distance synchrony of Golgi cells along the transverse axis, powerfully regulating granule cell firing by imposing inhibition during a specific time window. The essential network mechanisms, including tunable Golgi cell oscillations, on-beam inhibition and NMDA receptors causing first winner keeps winning of granule cells, illustrate how fundamental properties of the granule layer operate in tandem to produce (1) well timed and spatially bound output, (2) a wide dynamic range of granule cell firing and (3) transient and coherent gating oscillations. These results substantially enrich our understanding of granule cell layer processing, which seems to promote spatial group selection of granule cell activity as a function of timing of mossy fiber input
Strangeness Production in pp and pn Reactions at COSY
The COoler SYnchrotron COSY-J\"ulich delivers phase-space cooled, polarized
proton and deuteron beams with momenta up to p=3.65 GeV/c. Various experiments
on hadron-induced strangeness production on proton, neutron and nuclear targets
have been carried out. Here we report about recent results on associated
strangeness production in pp -> KYN (Y= Lambda,Sigma) reactions, on K^+
production in pn collisions, and on K K-bar pair production in pp interactions.
We also briefly discuss possible measurements to disentangle the parity of the
recently discovered pentaquark state Theta^+, the spin dependence of the YN
interaction, as well as planned experiments which aim at the determination of
the a_0-f_0 mixing matrix element, a quantity which is believed to be sensitive
to the nature of the light scalar mesons a_0/f_0(980).Comment: 10 pages, 3 figures; Proc. VIII Int. Conf. on Hypernuclear and
Strange Particle Physics, JLab, Oct. 14 - 18, 200
Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice
Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma
- …