48 research outputs found

    Transcriptome analysis of two pepper genotypes infected with pepper mild mottle virus

    Get PDF
    Pepper mild mottle virus (PMMoV) poses a significant threat to pepper production because it is highly contagious and extremely persistent in soil. Despite this threat, little is known about the molecular processes that underlie plant responses to pepper mild mottle virus. Here, we performed RNA sequencing of tolerant (ā€œ17-p63ā€) and susceptible (ā€œ16-217ā€) pepper genotypes after pepper mild mottle virus or mock inoculation. Viral accumulation in systemic leaves was lower in the pepper mild mottle virus-resistant 17-p63 genotype than in the pepper mild mottle virus-sensitive 16-217 genotype, and infection symptoms were more apparent in systemic leaves of 16-217 than in those of 17-p63 at the same timepoints during the infection process. We identified 2,959 and 2,159 differentially expressed genes (DEGs) in systemic leaves of infected 16-217 and 17-p63, respectively. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes from both genotypes revealed significant enrichment of the MAPK signaling pathway, plantā€“pathogen interaction, and flavonoid biosynthesis. A number of differentially expressed genes showed opposite trends in relation to stress resistance and disease defense in the two genotypes. We also performed weighted gene co-expression network analysis (WGCNA) of all samples and identified modules associated with resistance to pepper mild mottle virus, as well as seven hub genes. These results identify candidate virus resistance genes and provide insight into pepper defense mechanisms against pepper mild mottle virus

    Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant (pind) in eggplant (Solanum melongena L.)

    Get PDF
    Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype ā€˜14-345ā€™. The bagged pind fruits were light purple, whereas those of ā€˜14-345ā€™ were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in ā€˜14-345ā€™. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant

    Characterization of Non-heading Mutation in Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Get PDF
    Heading is a key agronomic trait of Chinese cabbage. A non-heading mutant with flat growth of heading leaves (fg-1) was isolated from an EMS-induced mutant population of the heading Chinese cabbage inbred line A03. In fg-1 mutant plants, the heading leaves are flat similar to rosette leaves. The epidermal cells on the adaxial surface of these leaves are significantly smaller, while those on the abaxial surface are much larger than in A03 plants. The segregation of the heading phenotype in the F2 and BC1 population suggests that the mutant trait is controlled by a pair of recessive alleles. Phytohormone analysis at the early heading stage showed significant decreases in IAA, ABA, JA and SA, with increases in methyl IAA and trans-Zeatin levels, suggesting they may coordinate leaf adaxial-abaxial polarity, development and morphology in fg-1. RNA-sequencing analysis at the early heading stage showed a decrease in expression levels of several auxin transport (BrAUX1, BrLAXs, and BrPINs) and responsive genes. Transcript levels of important ABA responsive genes, including BrABF3, were up-regulated in mid-leaf sections suggesting that both auxin and ABA signaling pathways play important roles in regulating leaf heading. In addition, a significant reduction in BrIAMT1 transcripts in fg-1 might contribute to leaf epinastic growth. The expression profiles of 19 genes with known roles in leaf polarity were significantly different in fg-1 leaves compared to wild type, suggesting that these genes might also regulate leaf heading in Chinese cabbage. In conclusion, leaf heading in Chinese cabbage is controlled through a complex network of hormone signaling and abaxial-adaxial patterning pathways. These findings increase our understanding of the molecular basis of head formation in Chinese cabbage

    Underlying Biochemical and Molecular Mechanisms for Seed Germination

    No full text
    With the burgeoning population of the world, the successful germination of seeds to achieve maximum crop production is very important. Seed germination is a precise balance of phytohormones, light, and temperature that induces endosperm decay. Abscisic acid and gibberellins—mainly with auxins, ethylene, and jasmonic and salicylic acid through interdependent molecular pathways—lead to the rupture of the seed testa, after which the radicle protrudes out and the endosperm provides nutrients according to its growing energy demand. The incident light wavelength and low and supra-optimal temperature modulates phytohormone signaling pathways that induce the synthesis of ROS, which results in the maintenance of seed dormancy and germination. In this review, we have summarized in detail the biochemical and molecular processes occurring in the seed that lead to the germination of the seed. Moreover, an accurate explanation in chronological order of how phytohormones inside the seed act in accordance with the temperature and light signals from outside to degenerate the seed testa for the thriving seed’s germination has also been discussed

    Expression Analyses of ABCDE Model Genes and Changes in Levels of Endogenous Hormones in Chinese Cabbage Exhibiting Petal-Loss

    No full text
    Abnormal formation of floral organs affects plant reproduction and can directly interfere with the progress of breeding programs. Using PCR amplification, ABCDE model genes BraAP2, BraAP3, BraPI, BraAG, BraSHP, and BraSEP were isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). We examined six development stages of floral buds collected from Chinese cabbage and compared between a line demonstrating normal flowering (A-8) and two mutated lines that exhibited plants having petal-loss (A-16 and A-17). The expression of ABCDE model genes has been analyzed by qRT-PCR. Compared with flower buds of petal-loss plants and normal plants, the expression of A-class gene BraAP2 was significantly decreased during the first to fourth stages, C-class gene BraAG expression was significantly decreased during the first to fifth stages, and D-class gene BraSHP expression was significantly decreased during the first to third stages. Furthermore, B-class gene BraAP3 and BraPI and E-class gene BraSEP expressions were significantly decreased during all six stages of petal-loss plants compared with normal plants. Enzyme-linked immunosorbent assays detected nine endogenous phytohormones during all stages examined here. Except for the second-stage and third-stage buds, levels of the auxin IAA and cytokinin dhZR were always higher in the petal-loss plants than the normal plants at corresponding time points. Meanwhile, concentrations of GA1+3 at the first, fourth, and fifth stages were higher in the petal-loss plants than in the normal plants. Our results provide a theoretical basis for future exploration of the molecular mechanism that determines petal loss and the effects that hormones have on such development in Chinese cabbage plants

    Glucosinolates in Self-crossed Progenies of Monosomic Cabbage Alien Addition Lines in Chinese Cabbage

    Get PDF
    Brassica species have been reported to possess cancer preventive activity due to glucosinolates (GLS) and their derived properties. Many studies on GLS have focused on Brassica oleracea and Brassica rapa. However, information on GLS in progeny between Chinese cabbage (B. rapa ssp. pekinensis) and cabbage (B. oleracea var. capitata) remains limited. In this study, eight GLS were detected in the self-crossed progenies of monosomic cabbage alien addition lines in Chinese cabbage (Chinese cabbage ā€“ cabbage MAALs) and parental Chinese cabbage, and nine GLS were detected in the parental cabbage. The variation of GLS content ranges was greater in the progeny than in the parental Chinese cabbage. The nine GLS identified were subjected to PCA to evaluate the differences among progeny and parents. Eight progeny samples had a comprehensive principal component score closer to or greater than that of cabbage, and four of them exhibited glucoraphanin (GRA) and total GLS contents greater than that of Chinese cabbage with the relative content of total indolic GLS was greater than 50%. These results offered new opportunity to improve GLS-containing of Chinese cabbage using genes from cabbage

    HSP70 Gene Family in <i>Brassica rapa</i>: Genome-Wide Identification, Characterization, and Expression Patterns in Response to Heat and Cold Stress

    No full text
    Heat shock proteins protect plants from abiotic stress, such as salt, drought, heat, and cold stress. HSP70 is one of the major members of the heat shock protein family. To explore the mechanism of HSP70 in Brassica rapa, we identified 28 putative HSP70 gene family members using state-of-the-art bioinformatics-based tools and methods. Based on chromosomal mapping, HSP70 genes were the most differentially distributed on chromosome A03 and the least distributed on chromosome A05. Ka/Ks analysis revealed that B. rapa evolution was subjected to intense purifying selection of the HSP70 gene family. RNA-sequencing data and expression profiling showed that heat and cold stress induced HSP70 genes. The qRT-PCR results verified that the HSP70 genes in Chinese cabbage (Brassica rapa ssp. pekinensis) are stress-inducible under both cold and heat stress. The upregulated expression pattern of these genes indicated the potential of HSP70 to mitigate environmental stress. These findings further explain the molecular mechanism underlying the responses of HSP70 to heat and cold stress

    What makes turnips: anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development

    No full text
    Turnips: ā€œNeepsā€ show early differences from non-tuberā€“forming relative Turnips show physiological and molecular signs of hypocotyl-tuberĀ development as early as 16 days after sowing, a finding that could help farmers improve the performance of this important food and feed crop. A team led by Guusje Bonnema from Wageningen University and Research in the Netherlands Ā compared the early anatomy of turnips and another closely related subspecies of Brassica rapa, the non-tuberā€“forming pak choi. They documented differences in the cellular organization of the xylem by day-16 after seed planting. Gene expression profiling between 1ā€“6 weeks after sowing revealed many genes involved in hypocotyl-tuberĀ initiation and growth. These genes affect a range of biological processes, from carbohydrate transport and metabolism to cell-wall growth to hormone regulation. Tissue culture experiments also showed that auxin, a plant growth hormone, promoted early hypocotyl-tuber development
    corecore