32 research outputs found

    Coulomb exchange and pairing contributions in nuclear Hartree-Fock-Bogoliubov calculations with the Gogny force

    Get PDF
    We present exact Hartree-Fock-Bogoliubov calculations with the finite range density dependent Gogny force using a triaxial basis. For the first time, all contributions to the Pairing and Fock Fields arising from the Gogny and Coulomb interactions as well as the two-body correction of the kinetic energy have been calculated in this basis. We analyze the relevance of these terms in different regions of the periodic table at zero and high angular momentum. The validity of commonly used approximations that neglect different terms in the variational equations is also checked. We find a decrease of the proton pairing energies mainly due to a Coulomb antipairing effect.Comment: 32 pages, 12 figures. In press in Nucl. Physics

    Simultaneous description of four positive and four negative parity bands

    Get PDF
    The extended coherent state model is further extended in order to describe two dipole bands of different parities. The formalism provides a consistent description of eight rotational bands. A unified description for spherical, transitional and deformed nuclei is possible. Projecting out the angular momentum and parity from a sole state, the Kπ=1+K^{\pi}=1^+ band acquires a magnetic character, while the electric properties prevail for the other band. Signatures for a static octupole deformation in some states of the dipole bands are pointed out. Some properties which distinguish between the dipole band states and states of the same parity but belonging to other bands are mentioned. Interesting features concerning the decay properties of the two bands are found. Numerical applications are made for 158^{158}Gd, 172^{172}Yb, 228,232^{228,232}Th, 226^{226}Ra, 238^{238}U and 238^{238}Pu, and the results are compared with the available data.Comment: 36 pages, 13 figures, 12 table

    Momentum distribution in heavy deformed nuclei: role of effective mass

    Full text link
    The impact of nuclear deformation on the momentum distributions (MD) of occupied proton states in 238^{238}U is studied with a phenomenological Woods-Saxon (WS) shell model and the self-consistent Skyrme-Hartree-Fock (SHF) scheme. Four Skyrme parameterizations (SkT6, SkM*, SLy6, SkI3) with different effective masses are used. The calculations reveal significant deformation effects in the low-momentum domain of Kπ=1/2±K^{\pi}=1/2^{\pm} states, mainly of those lying near the Fermi surface. For other states, the deformation effect on MD is rather small and may be neglected. The most remarkable result is that the very different Skyrme parameterizations and the WS potential give about identical MD. This means that the value of effective mass, being crucial for the description of the spectra, is not important for the spatial shape of the wave functions and thus for the MD. In general, it seems that, for the description of MD at 0k3000\le k \le 300 MeV/c, one may use any single-particle scheme (phenomenological or self-consistent) fitted properly to the global ground state properties.Comment: 14 pages, 6 figure

    High-spin states in boson models with applications to actinide nuclei

    Get PDF
    We use the 1/NN expansion formalism in a systematic study of high-spin states in the sdsd and sdgsdg boson models with emphasis on spin dependence of moment of inertia and E2 transitions. The results are applied to the high-spin states in the actinide nuclei 232^{232}Th, 234238^{234-238}U, where the need for gg bosons is especially acute but until now, no realistic calculation existed. We find that the dd-boson energy plays a crucial role in description of the high-spin data.Comment: 11 pages Latex, 4 figures available upon request (to appear in Phys. Lett. B

    Particle number projection with effective forces

    Get PDF
    The particle number projection method is formulated for density dependent forces and in particular for the finite range Gogny force. Detailed formula for the projected energy and its gradient are provided. The problems arising from the neglection of any exchange term, which may lead to divergences, are throughly discussed and the possible inaccuracies estimated. Numericala results for the projection after variation method are shown for the nucleus 164Er and for the projection before variation approach for the nuclei 48-50Cr. We also confirm the Coulomb antipairing effect found in mean field theories.Comment: 33 pages, 8 figures. Submit to Nuc. Phys.

    Anharmonic double-phonon excitations in the interacting boson model

    Get PDF
    Double-γ\gamma vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple extension of the original version of the model towards higher-order interactions is required to explain the observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the moments of inertia of ground- and γ\gamma-bands, and on the relative position of single-γ\gamma and double-γ\gamma bands is studied in detail. As an example of a realistic calculation, spectra and transitions of the highly γ\gamma-anharmonic nuclei 164^{164}Dy, 166^{166}Er, and 168^{168}Er are interpreted in this approach.Comment: 38 pages, TeX (ReVTeX). 15 ps figures. Submitted to Phys. Rev.

    Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos

    Full text link
    Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation energies have been measured via the (3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well suited for a direct measurement of the complete sub-MeV solar electron-neutrino spectrum (including pp neutrinos) where definitive effects of flavor conversion are expected

    Ground-γ\gamma band coupling in heavy deformed nuclei and SU(3) contraction limit

    Full text link
    We derive analytic expressions for the energies and B(E2)B(E2)-transition probabilities in the states of the ground and γ\gamma bands of heavy deformed nuclei within a collective Vector-Boson Model with SU(3) dynamical symmetry. On this basis we examine the analytic behavior of the SU(3) energy splitting and the B(E2) interband transition ratios in the SU(3) contraction limits of the model. The theoretical analyses outline physically reasonable ways in which the ground-γ\gamma band coupling vanishes. The experimental data on the lowest collective states of even-even rare earth nuclei and actinides strongly support the theoretical results. They suggest that a transition from the ground-γ\gamma band coupling scheme to a scheme in which the ground band is situated in a separate irreducible representation of SU(3) should be realized towards the midshell regions. We propose that generally the SU(3) group contraction process should play an important role for such a kind of transitions in any collective band coupling scheme in heavy deformed nuclei.Comment: 24 pages (LaTeX), 7 figures (12 postscript files

    Analytical description of the Coherent State Model for near vibrational and well deformed nuclei

    Full text link
    Analytical formulas for the excitation energies as well as for the electric quadrupole reduced transition probabilities in the ground, beta and gamma bands were derived within the coherent state model for the near vibrational and well deformed nuclei. Numerical calculations were performed for 42 nuclei exhibiting various symmetries and therefore with specific properties. Comparison of the calculation results with the corresponding experimental data shows a good agreement. The parameters involved in the proposed model satisfy evident regularities being interpolated by smooth curves. Few of them, which fall out of the curves, are interpreted as signatures for a critical point in a specific phase transition. This is actually supported also by the figures showing the excitation energy dependence on the angular momentum. The formulas provided for energies and B(E2) values are very simple, being written in a compact form, and therefore easy to be handled to explain the new experimental data.Comment: 9 figures, 50 page
    corecore