50 research outputs found

    Genetic Differentiation of Eastern Honey Bee (Apis cerana) Populations Across Qinghai-Tibet Plateau-Valley Landforms

    Get PDF
    Many species of high-altitude plateaus tend to be narrowly distributed along river valleys at lower elevations due to a limitation of suitable habitats. The eastern honeybee (Apis cerana) is such a species and this study explored the effects of long and narrow geographic distributions on honeybee populations. Genetic differentiation and diversity were assessed across populations of the southeastern Qinghai-Tibet Plateau. A total of 492 honeybee samples from eight sampling sites in four valleys were analyzed for the genetic differentiation and diversity of 31 microsatellite loci and mitochondrial tRNAleu-COII fragments. The following results were obtained: (1) Microsatellite genetic differentiation coefficients (FST) ranged from 0.06 to 0.16, and mitochondrial FST estimates ranged from 0.18 to 0.70 for different sampling sites in the same valley, indicating genetic differentiation. (2) Honeybees in adjacent valleys were also genetically differentiated. The FST of microsatellites and mitochondria were 0.04–0.29 and 0.06–0.76, respectively. (3) Likely a result of small population sizes, the observed genetic diversity was low. The observed impedance of honeybee gene flow among valleys increased both genetic differentiation and population numbers in the Qinghai-Tibet Plateau. This study contributes significantly to the current understanding of the mechanism underlying population genetic differentiation and highlights the potential effects of utilizing genetic resources that are subject to the ecological conditions of the long and narrow geographic distributions of plateau-valley landforms

    An <sup>18</sup>O‑Labeling Assisted LC/MS Method for Assignment of Aspartyl/Isoaspartyl Products from Asn Deamidation and Asp Isomerization in Proteins

    No full text
    An <sup>18</sup>O-labeling assisted LC/MS method was designed for unambiguous assignment of aspartyl/isoaspartyl products produced by Asn deamidation and Asp isomerization. By preparing the acid- and base-catalyzed deamidation standards in H<sub>2</sub><sup>18</sup>O, isomer-specific mass tags were introduced to aspartyl- and isoaspartyl-containing peptides, which could be easily distinguished by mass spectrometry (MS). In contrast to the traditional ways of assigning the isomers on the basis of their elution order in reverse phase HPLC, the new method is more reliable and universal. Furthermore, the new method can be applied to the entire protein digest, and is therefore more time- and cost-effective compared with existing methods that use synthetic aspartyl- and isoaspartyl-containing peptide standards. Finally, since the identification of isomers in the new method only relies on LC/MS analysis, it can be easily implemented using the most basic and inexpensive MS instrumentation, thus providing an attractive alternative to tandem MS based approaches. The feasibility of this new method is demonstrated using a model peptide as well as the entire digest of human serum transferrin

    Study on Compaction Characteristics and Compaction Process of an Unsaturated Silt Based on PFC3D

    No full text
    In order to reduce the construction cost of excessively wet silt roadbeds and improve the compaction quality, this paper studies the compaction characteristics and compaction technology of excessively wet silts through theoretical derivation, indoor experiments, numerical simulation, engineering verification, and other research methods. Based on the pendulum-type liquid bridge structure, this paper uses the Hertz–Mindlin theory, particle motion equation of state, and other theories to modify the force between particles of an unsaturated soil. Through the contact angle, which is a medium, the matrix suction is linked to the water content and is used to approximate the water content state of soil samples. Using PFC3D (particle flow code 3D) numerical simulation software, an unsaturated silt model was established based on Hill contact, and the model parameters were calibrated through basic geotechnical tests and triaxial compression tests. The correctness of the theory is verified by comparing the simulated triaxial compression test of wet silts with the indoor test. By simulating subgrade rolling, considering factors such as the distribution of contact force chain and the variation of compaction degree, the effects of rolling times, strong vibration, and weak vibration on the compaction effect were compared and analyzed. Finally, the optimal rolling and compaction process under the optimal water content is obtained through on-site engineering tests. The results show that: (1) The Hill contact model is reasonable for simulating the wet silt. (2) During the simulation of the roadbed compaction process using PFC3D software, it was found that the compaction degree change during the entire compaction process can be roughly divided into the initial compaction stage and the re-compaction stage. The reasonable number of compaction times was determined to be five through discrete element simulation. (3) It is found from the numerical simulation results that compared to static compaction, both strong and weak vibration compaction can effectively improve the compaction effect of subgrade compaction. The larger the vibration amplitude, the more obvious the improvement of the compaction effect. The compaction effect of strong vibration followed by weak vibration is stronger than that of weak vibration followed by strong vibration. (4) The optimal compaction process obtained under the optimal moisture content of 15% is static pressure once + strong vibration twice + weak vibration twice

    Molecular characterization and analysis of drug resistance-associated protein enolase 2 of Eimeria tenella

    No full text
    Eimeria tenella, an intestinal parasite, has brought huge economic losses to the poultry industry. The prevalence and severity of the development of drug resistance has increased the challenge of coccidiosis control. We previously identified the enolase 2 of E. tenella (EtENO2) was differentially expressed in drug-sensitive (DS) and drug-resistant strains using RNA-seq. In this study, the expression of EtENO2 in diclazuril-resistant (DZR), maduramicin-resistant (MRR), and salinomycin-resistant (SMR) strains was analyzed by quantitative real-time PCR (qRT-PCR) and western blots. EtENO2 was highly expressed in several drug-resistant strains compared with the DS strain. The qRT-PCR showed that the transcription level of EtENO2 in the field-isolated resistant strains was upregulated compared with the DS strain. The enzyme activity results indicated that the catalytic activity of EtENO2 in the drug-resistant strains was higher than in the DS strain. In addition, qRT-PCR and western blots showed that the expression level of EtENO2 was higher in second generation merozoites (SM) and unsporulated oocysts (UO) than that in sporozoites (SZ) and sporulated oocysts (SO). Immunofluorescence localization revealed that EtENO2 was distributed throughout SZ and SM and on the surface of the parasites. After the SZ invasion DF-1 cells, it was also observed on the parasitophorous vacuole membrane. Our secretion experiments found that EtENO2 could be secreted outside the SZ. This study indicated that EtENO2 might be related to the interaction between E. tenella and host cells and be involved in the development of E. tenella resistance to some anticoccidial drugs

    Further investigation of the characteristics and biological function of

    No full text
    Apical membrane antigen 1 (AMA1) is a type I integral membrane protein that is highly conserved in apicomplexan parasites. Previous studies have shown that Eimeria tenella AMA1 (EtAMA1) is critical for sporozoite invasion of host cells. Here, we show that EtAMA1 is a microneme protein secreted by sporozoites, confirming previous results. Individual and combined treatment with antibodies of EtAMA1 and its interacting proteins, E. tenella rhoptry neck protein 2 (EtRON2) and Eimeria-specific protein (EtESP), elicited significant anti-invasion effects on the parasite in a concentration-dependent manner. The overexpression of EtAMA1 in DF-1 cells showed a significant increase of sporozoite invasion. Isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS were used to screen differentially expressed proteins (DEPs) in DF-1 cells transiently transfected with EtAMA1. In total, 3953 distinct nonredundant proteins were identified and 163 of these were found to be differentially expressed, including 91 upregulated proteins and 72 downregulated proteins. The DEPs were mainly localized within the cytoplasm and were involved in protein binding and poly(A)-RNA binding. KEEG analyses suggested that the key pathways that the DEPs belonged to included melanogenesis, spliceosomes, tight junctions, and the FoxO and MAPK signaling pathways. The data in this study not only provide a comprehensive dataset for the overall protein changes caused by EtAMA1 expression, but also shed light on EtAMA1’s potential molecular mechanisms during Eimeria infections

    Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella.

    No full text
    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55-59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results suggested that EtPDIL might be involved in sporulation in external environments and in host cell adhesion, invasion and development of E. tenella

    Molecular characterization and protective efficacy of a new conserved hypothetical protein of

    No full text
    Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. This parasite encodes a genome of more than 8000 genes. However, more than 70% of the gene models for this species are currently annotated as hypothetical proteins. In this study, a conserved hypothetical protein gene of E. tenella, designated EtCHP18905, was cloned and identified, and its immune protective effects were evaluated. The open reading frame of EtCHP18905 was 1053bp and encoded a protein of 350 amino acids with a molecular weight of 38.7kDa. The recombinant EtCHP18905 protein (rEtCHP18905) was expressed in E. coli. Using western blot, the recombinant protein was successfully recognized by anti GST-Tag monoclonal antibody and anti-sporozoites protein rabbit serum. Real-time quantitative PCR analysis revealed that the EtCHP18905 mRNA levels were higher in sporozoites than in unsporulated oocysts, sporulated oocysts and second-generation merozoites. Western blot analysis showed that EtCHP18905 protein expression levels were lower in sporozoites than in other stages. Immunofluorescence analysis indicated that the EtCHP18905 protein was located on the surface of sporozoites and second-generation merozoites. Inhibition experiments showed that the ability of sporozoites to invade host cells was significantly decreased after treatment with the anti-rEtCHP18905 polyclonal antibody. Vaccination with rEtCHP18905 protein was able to significantly decrease mean lesion scores and oocyst outputs as compared to non-vaccinated controls. The results suggest that the rEtCHP18905 protein can induce partial immune protection against infection with E. tenella and could be an effective candidate for the development of new vaccines

    Molecular characterization and protective efficacy of the microneme 2 protein from Eimeria tenella

    No full text
    Microneme proteins play an important role in the adherence of apicomplexan parasites to host cells during the invasion process. In this study, the microneme 2 protein from the protozoan parasite Eimeria tenella (EtMIC2) was cloned, characterized, and its protective efficacy as a DNA vaccine investigated. The EtMIC2 gene, which codes for a 35.07 kDa protein in E. tenella sporulated oocysts, was cloned and recombinant EtMIC2 protein (rEtMIC2) was produced in an Escherichia coli expression system. Immunostaining with an anti-rEtMIC2 antibody showed that the EtMIC2 protein mainly localized in the anterior region and membrane of sporozoites, in the cytoplasm of first- and second-generation merozoites, and was strongly expressed during first-stage schizogony. In addition, incubation with specific antibodies against EtMIC2 was found to efficiently reduce the ability of E. tenella sporozoites to invade host cells. Furthermore, animal-challenge experiments demonstrated that immunization with pcDNA3.1(+)-EtMIC2 significantly increased average body weight gain, while decreasing the mean lesion score and oocyst output in chickens. Taken together, these results suggest that EtMIC2 plays an important role in parasite cell invasion and may be a viable candidate for the development of new vaccines against E. tenella infection in chickens
    corecore