3 research outputs found
Critical jamming of frictional grains in the generalized isostaticity picture
While frictionless spheres at jamming are isostatic, frictional spheres at
jamming are not. As a result, frictional spheres near jamming do not
necessarily exhibit an excess of soft modes. However, a generalized form of
isostaticity can be introduced if fully mobilized contacts at the Coulomb
friction threshold are considered as slipping contacts. We show here that, in
this framework, the vibrational density of states (DOS) of frictional discs
exhibits a plateau when the generalized isostaticity line is approached. The
crossover frequency to elastic behavior scales linearly with the distance from
this line. Moreover, we show that the frictionless limit, which appears
singular when fully mobilized contacts are treated elastically, becomes smooth
when fully mobilized contacts are allowed to slip.Comment: 4 pages, 4 figures, submitted to PR
Bounds on the shear load of cohesionless granular matter
We characterize the force state of shear-loaded granular matter by relating
the macroscopic stress to statistical properties of the force network. The
purely repulsive nature of the interaction between grains naturally provides an
upper bound for the sustainable shear stress, which we analyze using an
optimization procedure inspired by the so-called force network ensemble. We
establish a relation between the maximum possible shear resistance and the
friction coefficient between individual grains, and find that anisotropies of
the contact network (or the fabric tensor) only have a subdominant effect.
These results can be considered the hyperstatic limit of the force network
ensemble and we discuss possible implications for real systems. Finally, we
argue how force anisotropies can be related quantitatively to experimental
measurements of the effective elastic constants.Comment: 17 pages, 6 figures. v2: slightly rearranged, introduction and
discussion rewritte