205 research outputs found

    The kinematics of the bi-lobal supernova remnant G 65.3+5.7 - Paper II

    Full text link
    Further deep, narrow-band images in the light of [O III] 5007 A have been added to the previous mosaic of the faint galactic supernova remnant G 65.3+5.7. Additionally longslit spatially resolved [O III] 5007 A line profiles have been obtained at sample positions using the Manchester Echelle Spectrometer at the San Pedro Martir observatory. The remnant is shown to be predominantly bi-lobal with an EW axis for this structure. However, a faint additional northern lobe has now been revealed. Splitting of the profiles along the slit lengths, when extrapolated to the remnant's centre, although uncertain suggests that the expansion velocity of this remnant is between 124 and 187 km/s ie much lower than the 400 km/s previously predicted for the forward shock velocity from the X-ray emission. An expansion proper motion measurement of 2.1+-0.4 arcsec in 48 years for the remnant's filamentary edge in the light of Halpha+[N II] has also been made. When combined with an expansion velocity of ~155 km/s, a distance of ~800 pc to G 65.3+5.7 is derived. Several possibilities are considered for the large difference in the expansion velocity measured here and the 400 km/s shock velocity required to generate the X-ray emission. It is also suggested that the morphology of the remnant may be created by a tilt in the galactic magnetic field in this vicinity.Comment: 10 pages, 5 figures, accepted for publication in A&

    Panoramic Views of the Cygnus Loop

    Get PDF
    We present a complete atlas of the Cygnus Loop supernova remnant in the light of [O III] (5007), H alpha, and [S II] (6717, 6731). Despite its shell-like appearance, the Cygnus Loop is not a current example of a Sedov-Taylor blast wave. Rather, the optical emission traces interactions of the supernova blast wave with clumps of gas. The surrounding interstellar medium forms the walls of a cavity through which the blast wave now propagates, including a nearly complete shell in which non-radiative filaments are detected. The Cygnus Loop blast wave is not breaking out of a dense cloud, but is instead running into confining walls. The interstellar medium dominates not only the appearance of the Cygnus Loop but also the continued evolution of the blast wave. If this is a typical example of a supernova remnant, then global models of the interstellar medium must account for such significant blast wave deceleration.Comment: 28 pages AAS Latex, 28 black+white figures, 6 color figures. To be published in The Astrophysical Journal Supplement Serie

    Supernova Remnants in the Magellanic Clouds III: An X-ray Atlas of LMC Supernova Remnants

    Full text link
    We have used archival ROSAT data to present X-ray images of thirty-one supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). We have classified these remnants according to their X-ray morphologies, into the categories of Shell-Type, Diffuse Face, Centrally Brightened, Point-Source Dominated, and Irregular. We suggest possible causes of the X-ray emission for each category, and for individual features of some of the SNRs.Comment: 27 pages, 6 figures (9 figure files). To appear in the Supplement Series of the Astrophysical Journal, August 1999 Vol. 123 #

    The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---

    Get PDF
    We observed the North-East (NE) Limb toward the center region of the Cygnus Loop with the ASCA Observatory. We found a radial variation of electron temperature (kTe) and ionization timescale (log(\tau)) whereas no variation could be found for the abundances of heavy elements. In this paper, we re-analyzed the same data set and new observations with the latest calibration files. Then we constructed the precise spatial variations of kTe, log(\tau), and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found a spatial variation not only in kTe and in log(\tau) but also in most of heavy elements. As described in Miyata et al. (1994), values of kTe increase and those of log(\tau) decrease toward the inner region. We found that the abundance of heavy elements increases toward the inner region. The radial profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs, where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are constant. On the contrary, inside of 0.9 Rs, abundances of these elements are 20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump structure was the possible evidence for the pre-existing cavity produced by the precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta was roughly 4\Msun. We then estimated the main-sequence mass to be roughly 15\Msun, which supports the massive star in origin of the Cygnus Loop supernova remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap

    Unconventional ferromagnetic and spin-glass states of the reentrant spin glass Fe0.7Al0.3

    Full text link
    Spin excitations of single crystal Fe0.7Al0.3 were investigated over a wide range in energy and reciprocal space with inelastic neutron scattering. In the ferromagnetic phase, propagating spin wave modes become paramagnon-like diffusive modes beyond a critical wave vector q0, indicating substantial disorder in the long-range ordered state. In the spin glass phase, spin dynamics is strongly q-dependent, suggesting remnant short-range spin correlations. Quantitative model for S(energy,q) in the ``ferromagnetic'' phase is determined.Comment: 4 pages, 5 figure

    The Evolution of Supernovae in Circumstellar Wind-Blown Bubbles I. Introduction and One-Dimensional Calculations

    Full text link
    Mass loss from massive stars (\ga 8 \msun) can result in the formation of circumstellar wind blown cavities surrounding the star, bordered by a thin, dense, cold shell. When the star explodes as a core-collapse supernova (SN), the resulting shock wave will interact with this modified medium around the star, rather than the interstellar medium. In this work we first explore the nature of the circumstellar medium around massive stars in various evolutionary stages. This is followed by a study of the evolution of SNe within these wind-blown bubbles. The evolution depends primarily on a single parameter Λ\Lambda, the ratio of the mass of the dense shell to that of the ejected material. We investigate the evolution for different values of this parameter. We also plot approximate X-ray surface brightness plots from the simulations. Our results show that in many cases the SN remnant spends a significant amount of time within the bubble. The low density within the bubble can delay the onset of the Sedov stage, and may end up reducing the amount of time spent in the Sedov stage. The complicated density profile within the bubble makes it difficult to infer the mass-loss properties of the pre-SN star by studying the evolution of the resulting supernova remnant.Comment: 42 pages, 13 figures. Submitted to the Astrophysical Journal, Sept 200

    The Interstellar Environment of our Galaxy

    Get PDF
    We review the current knowledge and understanding of the interstellar medium of our galaxy. We first present each of the three basic constituents - ordinary matter, cosmic rays, and magnetic fields - of the interstellar medium, laying emphasis on their physical and chemical properties inferred from a broad range of observations. We then position the different interstellar constituents, both with respect to each other and with respect to stars, within the general galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher
    corecore