330 research outputs found

    An exact solution of spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits

    Get PDF
    An exact solution of nuclear spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits is presented. The extended one-variable Heine-Stieltjes polynomials associated to the Bethe ansatz equations of the solution are determined, of which the sets of the zeros give the solution of the model, and can be determined relatively easily. A comparison of the solution to that of the standard pairing interaction with constant interaction strength among pairs in any orbit is made. It is shown that the overlaps of eigenstates of the model with those of the standard pairing model are always large, especially for the ground and the first excited state. However, the quantum phase crossover in the non-separable pairing model cannot be accounted for by the standard pairing interaction.Comment: 5 pages, 1 figure, LaTe

    Nanocavity Induced Light Concentration for Energy Efficient Heat Assisted Magnetic Recording Media

    Full text link
    Enhancing light absorption in the recording media layer can improve the energy efficiency and prolong the device lifetime in heat assisted magnetic recording (HAMR). In this work, we report the design and implementation of a resonant nanocavity structure to enhance the light-matter interaction within an ultrathin FePt layer. In a Ag/SiO2/FePt trilayer structure, the thickness of the dielectric SiO2 layer is systematically tuned to reach maximum light absorption at the wavelength of 830 nm. In the optimized structure, the light reflection is reduced by more than 50%. This results in effective laser heating of the FePt layer, as imaged by an infrared camera. The scheme is highly scalable for thinner FePt layers and shorter wavelengths to be used in future HAMR technologies.Comment: 15 pages, 6 figure

    Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests

    Get PDF
    Bacteria are one of the most abundant and diverse groups of micro-organisms and mediate many critical terrestrial ecosystem processes. Despite the crucial ecological role of bacteria, our understanding of their large-scale biogeography patterns across forests, and the processes that determine these patterns lags significantly behind that of macroorganisms. Here, we evaluated the geographic distributions of bacterial diversity and their driving factors across nine latitudinal forests along a 3,700-km north–south transect in eastern China, using high-throughput 16S rRNA gene sequencing. Four of 32 phyla detected were dominant: Acidobacteria, Actinobacteria, Alphaproteobacteria and Chloroflexi (relative abundance > 5%). Significant increases in bacterial richness and phylogenetic diversity were observed for temperate forests compared with subtropical or tropical forests. The soil organic matter (SOM) mineralisation rate (SOM , an index of SOM availability) explained the largest significant variations in bacterial richness. Variation partition analysis revealed that the bacterial community structure was closely correlated with environmental variables and geographic distance, which together explained 80.5% of community variation. Among all environmental factors, climatic features (MAT and MAP) were the best predictors of the bacterial community structure, whereas soil pH and SOM emerged as the most important edaphic drivers of the bacterial community structure. Plant functional traits (community weighted means of litter N content) and diversity resulted in weak but significant correlations with the bacterial community structure. Our findings provide new evidence of bacterial biogeography patterns from tropical to cold temperate forests. Additionally, the results indicated a close linkage among soil bacterial diversity, climate and SOM decomposition, which is critical for predicting continental-scale responses under future climate change scenarios and promoting sustainable forest ecosystem services. A plain language summary is available for this article. min mi

    Clustered microRNAs' coordination in regulating protein-protein interaction network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs), a growing class of small RNAs with crucial regulatory roles at the post-transcriptional level, are usually found to be clustered on chromosomes. However, with the exception of a few individual cases, so far little is known about the functional consequence of this conserved clustering of miRNA loci. In animal genomes such clusters often contain non-homologous miRNA genes. One hypothesis to explain this heterogeneity suggests that clustered miRNAs are functionally related by virtue of co-targeting downstream pathways.</p> <p>Results</p> <p>Integrating of miRNA cluster information with protein protein interaction (PPI) network data, our research supports the hypothesis of the functional coordination of clustered miRNAs and links it to the topological features of miRNAs' targets in PPI network. Specifically, our results demonstrate that clustered miRNAs jointly regulate proteins in close proximity of the PPI network. The possibility that two proteins yield to this coordinated regulation is negatively correlated with their distance in PPI network. Guided by the knowledge of this preference, we found several network communities enriched with target genes of miRNA clusters. In addition, our results demonstrate that the variance of this propensity can also partly be explained by protein's connectivity and miRNA's conservation.</p> <p>Conclusion</p> <p>In summary, this work supports the hypothesis of intra-cluster coordination and investigates the extent of this coordination.</p

    The role of transit accessibility in influencing the activity space and non-work activity participation of different income groups

    Get PDF
    Improved accessibility by transit service constitutes a critical component in removing spatial barriers in daily mobility for disadvantaged groups. However, the effects of transit accessibility on the daily mobility and activity participation of different social strata remain inconclusive. This study investigates the role of transit accessibility on the activity space of three income groups in Hong Kong. The results show that the availability of transit stations and network accessibility by mass transit rail (MTR) are significantly linked to the spatial extensiveness of activity space of the higher- and medium-income commuters, while bus plays a more important role for the daily mobility of the low-income group. Concerning non-work activity participation, the low-income non-commuters appear less affected by the availability of MTR stations than the other two groups, suggesting a potentially lower ability of using MTR to carry out different daily activities. Our findings offer some in-depth insights into the possible social inequality of using transit service, thereby contributing to a more nuanced understanding of the relationship between transit accessibility and mobility in relation to economic status. Policy recommendations to alleviate transport disadvantage and improve social equity are proposed

    Genome-wide identification of TPS and TPP genes in cultivated peanut (Arachis hypogaea) and functional characterization of AhTPS9 in response to cold stress

    Get PDF
    IntroductionTrehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited.MethodsThis study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9’s role in cold tolerance.ResultsIn the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes.DiscussionThis comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance

    Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming

    Get PDF
    Microbial carbon use efficiency (CUE) is a key microbial trait affecting soil organic carbon (SOC) dynamics. However, we lack a unified and predictive understanding of the mechanisms underpinning the temperature response of microbial CUE, and, thus, its impacts on SOC storage in a warming world. Here, we leverage three independent soil datasets (n = 618 for microbial CUE; n = 591 and 660 for heterotrophic respiration) at broad spatial scales to investigate the microbial thermal response and its implications for SOC responses to warming. We show a nonlinear increase and decrease of CUE and heterotrophic respiration, respectively, in response to mean annual temperature (MAT), with a thermal threshold at ≈15 °C. These nonlinear relationships are mainly associated with changes in the fungal-to-bacterial biomass ratio. Our microbial-explicit SOC model predicts significant SOC losses at MAT above ≈15 °C due to increased CUE, total microbial biomass, and heterotrophic respiration, implying a potential abrupt transition to more vulnerable SOC under climate warming
    corecore