56 research outputs found
Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157
The bacterial Type 6 secretion system (T6SS) translocates protein toxins (also called effectors) from the cytosol of a T6SS-carrying cell to a target cell by a syringe-like supramolecular complex resembling a contractile tail of bacteriophages. Valine-glycine repeat protein G (VgrG) proteins, which are the homologues of the gp27-gp5 (gene product) cell puncturing complex of bacteriophage T4, are considered to be located at the attacking tip of the bacterial T6SS apparatus. Here, we over-expressed six VgrG proteins from pathogenic Escherichia coli O157 and CFT073 strains. Purified VgrG1 of E. coli O157 and c3393 of E. coli CFT073 form trimer in solution and are rich in β-structure. We also solved the crystal structure of a trypsin-resistant C-terminal fragment of E. coli O157 VgrG1 (VgrG1CG561) at 1.95 Å resolution. VgrG1CG561 forms a three-stranded antiparallel β-helix which is structurally similar to the β-helix domain of the central spike protein (gp138) of phi92 phage, indicating a possible evolutional relationship. Comparison of four different three-stranded β-helix proteins shows how their amino acid composition determines the protein fol
Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157
The bacterial Type 6 secretion system (T6SS) translocates protein toxins (also called effectors) from the cytosol of a T6SS-carrying cell to a target cell by a syringe-like supramolecular complex resembling a contractile tail of bacteriophages. Valine-glycine repeat protein G (VgrG) proteins, which are the homologues of the gp27-gp5 (gene product) cell puncturing complex of bacteriophage T4, are considered to be located at the attacking tip of the bacterial T6SS apparatus. Here, we over-expressed six VgrG proteins from pathogenic Escherichia coli O157 and CFT073 strains. Purified VgrG1 of E. coli O157 and c3393 of E. coli CFT073 form trimer in solution and are rich in beta-structure. We also solved the crystal structure of a trypsin-resistant C-terminal fragment of E. coli O157 VgrG1 (VgrG1C(G561)) at 1.95 A resolution. VgrG1C(G561) forms a three-stranded antiparallel beta-helix which is structurally similar to the beta-helix domain of the central spike protein (gp138) of phi92 phage, indicating a possible evolutional relationship. Comparison of four different three-stranded beta-helix proteins shows how their amino acid composition determines the protein fold
Morphogenesis of the T4 tail and tail fibers
Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study
Morphogenesis of the T4 tail and tail fibers
Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study
Structure and Function of the T4 Spackle Protein Gp61.3
The bacteriophage T4 genome contains two genes that code for proteins with lysozyme activity—e and 5. Gene e encodes the well-known T4 lysozyme (commonly called T4L) that functions to break the peptidoglycan layer late in the infection cycle, which is required for liberating newly assembled phage progeny. Gene product 5 (gp5) is the tail-associated lysozyme, a component of the phage particle. It forms a spike at the tip of the tail tube and functions to pierce the outer membrane of the Escherichia coli host cell after the phage has attached to the cell surface. Gp5 contains a T4L-like lysozyme domain that locally digests the peptidoglycan layer upon infection. The T4 Spackle protein (encoded by gene 61.3) has been thought to play a role in the inhibition of gp5 lysozyme activity and, as a consequence, in making cells infected by bacteriophage T4 resistant to later infection by T4 and closely related phages. Here we show that (1) gp61.3 is secreted into the periplasm where its N-terminal periplasm-targeting peptide is cleaved off; (2) gp61.3 forms a 1:1 complex with the lysozyme domain of gp5 (gp5Lys); (3) gp61.3 selectively inhibits the activity of gp5, but not that of T4L; (4) overexpression of gp5 causes cell lysis. We also report a crystal structure of the gp61.3-gp5Lys complex that demonstrates that unlike other known lysozyme inhibitors, gp61.3 does not interact with the active site cleft. Instead, it forms a “wall” that blocks access of an extended polysaccharide substrate to the cleft and, possibly, locks the enzyme in an “open-jaw”-like conformation making catalysis impossible
P15 and P3, the Tail Completion Proteins of Bacteriophage T4, Both Form Hexameric Rings
Two proteins, gp15 and gp3 (gp for gene product), are required to complete the assembly of the T4 tail. gp15 forms the connector which enables the tail to bind to the head, whereas gp3 is involved in terminating the elongation of the tail tube. In this work, genes 15 and 3 were cloned and overexpressed, and the purified gene products were studied by analytical ultracentrifugation, electron microscopy, and circular dichroism. Determination of oligomerization state by sedimentation equilibrium revealed that both gp15 and gp3 are hexamers of the respective polypeptide chains. Electron microscopy of the negatively stained P15 and P3 (P denotes the oligomeric state of the gene product) revealed that both proteins form hexameric rings, the diameter of which is close to that of the tail tube. The differential roles between gp15 and gp3 upon completion of the tail are discussed
- …