117 research outputs found

    Complex paths for regular-to-chaotic tunneling rates

    Full text link
    In generic Hamiltonian systems tori of regular motion are dynamically separated from regions of chaotic motion in phase space. Quantum mechanically these phase-space regions are coupled by dynamical tunneling. We introduce a semiclassical approach based on complex paths for the prediction of dynamical tunneling rates from regular tori to the chaotic region. This approach is demonstrated for the standard map giving excellent agreement with numerically determined tunneling rates.Comment: 5 pages, 4 figure

    Towards Retinoid Therapy for Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease(AD) is associated with a variety of pathophysiological features, including amyloid plaques, inflammation, immunological changes, cell death and regeneration processes, altered neurotransmission, and age-related changes. Retinoic acid receptors (RARs) and retinoids are relevant to all of these. Here we review the pathology, pharmacology, and biochemistry of AD in relation to RARs and retinoids, and we suggest that retinoids are candidate drugs for treatment of AD

    Quantum Dynamics of Atom-molecule BECs in a Double-Well Potential

    Full text link
    We investigate the dynamics of two-component Bose-Josephson junction composed of atom-molecule BECs. Within the semiclassical approximation, the multi-degree of freedom of this system permits chaotic dynamics, which does not occur in single-component Bose-Josephson junctions. By investigating the level statistics of the energy spectra using the exact diagonalization method, we evaluate whether the dynamics of the system is periodic or non-periodic within the semiclassical approximation. Additionally, we compare the semiclassical and full-quantum dynamics.Comment: to appear in JLTP - QFS 200

    Periodic Orbits and Spectral Statistics of Pseudointegrable Billiards

    Full text link
    We demonstrate for a generic pseudointegrable billiard that the number of periodic orbit families with length less than ll increases as πb0l2/⟹a(l)⟩\pi b_0l^2/\langle a(l) \rangle, where b0b_0 is a constant and ⟹a(l)⟩\langle a(l) \rangle is the average area occupied by these families. We also find that ⟹a(l)⟩\langle a(l) \rangle increases with ll before saturating. Finally, we show that periodic orbits provide a good estimate of spectral correlations in the corresponding quantum spectrum and thus conclude that diffraction effects are not as significant in such studies.Comment: 13 pages in RevTex including 5 figure

    Slow relaxation to equipartition in spring-chain systems

    Get PDF
    In this study, one-dimensional systems of masses connected by springs, i.e., spring-chain systems, are investigated numerically. The average kinetic energy of chain-end particles of these systems is larger than that of other particles, which is similar to the behavior observed for systems made of masses connected by rigid links. The energetic motion of the end particles is, however, transient, and the system relaxes to thermal equilibrium after a while, where the average kinetic energy of each particle is the same, that is, equipartition of energy is achieved. This is in contrast to the case of systems made of masses connected by rigid links, where the energetic motion of the end particles is observed in equilibrium. The timescale of relaxation estimated by simulation increases rapidly with increasing spring constant. The timescale is also estimated using the Boltzmann-Jeans theory and is found to be in quite good agreement with that obtained by the simulation

    Slow relaxation in weakly open vertex-splitting rational polygons

    Get PDF
    The problem of splitting effects by vertex angles is discussed for nonintegrable rational polygonal billiards. A statistical analysis of the decay dynamics in weakly open polygons is given through the orbit survival probability. Two distinct channels for the late-time relaxation of type 1/t^delta are established. The primary channel, associated with the universal relaxation of ''regular'' orbits, with delta = 1, is common for both the closed and open, chaotic and nonchaotic billiards. The secondary relaxation channel, with delta > 1, is originated from ''irregular'' orbits and is due to the rationality of vertices.Comment: Key words: Dynamics of systems of particles, control of chaos, channels of relaxation. 21 pages, 4 figure

    Spectral properties of quantized barrier billiards

    Full text link
    The properties of energy levels in a family of classically pseudointegrable systems, the barrier billiards, are investigated. An extensive numerical study of nearest-neighbor spacing distributions, next-to-nearest spacing distributions, number variances, spectral form factors, and the level dynamics is carried out. For a special member of the billiard family, the form factor is calculated analytically for small arguments in the diagonal approximation. All results together are consistent with the so-called semi-Poisson statistics.Comment: 8 pages, 9 figure

    Scale Anomaly and Quantum Chaos in the Billiards with Pointlike Scatterers

    Full text link
    We argue that the random-matrix like energy spectra found in pseudointegrable billiards with pointlike scatterers are related to the quantum violation of scale invariance of classical analogue system. It is shown that the behavior of the running coupling constant explains the key characteristics of the level statistics of pseudointegrable billiards.Comment: 10 pages, RevTex file, uuencode

    Level spacing distribution of pseudointegrable billiard

    Full text link
    In this paper, we examine the level spacing distribution P(S)P(S) of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed P(S)P(S) is a new type, which is quite different from the previous conclusion. Even in the strong coupling limit, the Poisson-like behavior rather than Wigner-like is seen for S>1S>1, although the level repulsion still remains in the small SS region. The difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure

    Invariant varieties of periodic points for some higher dimensional integrable maps

    Full text link
    By studying various rational integrable maps on C^d\mathbf{\hat C}^d with pp invariants, we show that periodic points form an invariant variety of dimension ≄p\ge p for each period, in contrast to the case of nonintegrable maps in which they are isolated. We prove the theorem: {\it `If there is an invariant variety of periodic points of some period, there is no set of isolated periodic points of other period in the map.'}Comment: 24 page
    • 

    corecore