56 research outputs found

    Limb diversity and digit reduction in reptilian evolution

    Get PDF
    Journal ArticleThe study of morphological rules, or trends, offered classical biologists the opportunity to address the mechanisms underlying the evolution of anatomical designs. Regularities in evolution suggested that common functional or developmental rules governed the transformation of structures. Parallelism is one such example

    A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins

    Full text link
    Despite their evolutionary, developmental, and functional importance the origin of vertebrate paired appendages remains uncertain. In mice, a single enhancer termed ZRS is solely responsible for Shh expression in limbs. Here, zebrafish and mouse transgenic assays trace the functional equivalence of ZRS across the gnathostome phylogeny. CRISPR/Cas9-mediated deletion of the medaka-ZRS and enhancer assays reveal the existence of ZRS shadow enhancers in both teleost and human genomes. Deletion of both ZRS and shadow ZRS abolish shh expression and completely truncate pectoral fin formation. Strikingly, deletion of ZRS results in an almost complete ablation of the dorsal fin. This finding indicates that a ZRS-Shh regulatory module is shared by paired and median fins, and that paired fins likely emerged by the co‐option of developmental programs established in the median fins of stem gnathostomes. Shh function was later reinforced in pectoral fin development with the recruitment of shadow enhancers, conferring additional robustness

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Fossils Everywhere

    No full text

    Making Limbs from Fins

    Get PDF
    Our limbs evolved from fish fins as vertebrates colonized aquatic shallows and land. If we understood the genetics underlying this transition, could we build a limb on a fish? In this issue of Developmental Cell, Freitas et al. (2012) show that boosting Hoxd13 expression can bring zebrafish one step closer to terra firma
    • 

    corecore