1 research outputs found
Modulation of immune cum inflammatory pathway by earthworm granulation tissue extract in wound healing of diabetic rabbit model
Regeneration is a rare occurrence in the animal kingdom, but the earthworm stands out as a remarkable example of this phenomenon. Recent research has highlighted the promising wound healing properties of extracts derived from earthworms. Therefore, we propose that earthworm granulation tissue extract (EGTE) may facilitate wound healing by regulating immune responses in a rabbit diabetic wound model. Electron microscopy reveals that 70 % EGTE possesses noteworthy porosity with spherical to irregularly oval configuration. Gas chromatography–mass spectrometry (GC–MS) Characterization of EGTE revealed higher levels of ergosta-5,7,22-trien-3-ol, (3. beta.,22E). In-Vitro studies revealed significant anti-oxidant, anti-inflammatory and anti-bacterial properties in dose dependent manner. Likewise, cytotoxicity assessments reveal that 70 % EGTE exhibits minimal harm to cells while displaying substantial antioxidant and anti-inflammatory activities. For In-Vivo studies excision wounds were created on the dorsal regions of the experimental animals and were divided as Group I (50 % EGTE), Group II (70 % EGTE), Group III (vehicle) and Group IV (distilled water). Over a 21-day observation period 70 % EGTE facilitated the early healing of wounds in the experimental animals, evident through prompt wound closure, granulation tissue formation, increased DNA content, enhanced tensile strength of the wound area and enhanced the expression/synthesis of wound healing markers/proteins. From these results it can be postulated that EGTE accelerates wound healing by immune modulation, dampening of inflammatory pathway and enhanced expression of growth markers. Henceforth making it promising candidate for therapeutic use in diabetic wound healing