2,537 research outputs found
Brownian motors: current fluctuations and rectification efficiency
With this work we investigate an often neglected aspect of Brownian motor
transport: The r\^{o}le of fluctuations of the noise-induced current and its
consequences for the efficiency of rectifying noise. In doing so, we consider a
Brownian inertial motor that is driven by an unbiased monochromatic,
time-periodic force and thermal noise. Typically, we find that the asymptotic,
time- and noise-averaged transport velocities are small, possessing rather
broad velocity fluctuations. This implies a corresponding poor performance for
the rectification power. However, for tailored profiles of the ratchet
potential and appropriate drive parameters, we can identify a drastic
enhancement of the rectification efficiency. This regime is marked by
persistent, uni-directional motion of the Brownian motor with few back-turns,
only. The corresponding asymmetric velocity distribution is then rather narrow,
with a support that predominantly favors only one sign for the velocity.Comment: 9 pages, 4 figure
Based on the constitutive model of high temperature plastic deformation of TC17 titanium alloy for underwater robot metal material
The hot compression tests of underwater vehicle metal material TC17 titanium alloy at deformation temperature of 800 ~ 950 °C and strain rate of 0,01 ~ 10 s-1 were carried out by Thermecmaster-Z thermal simulator. The hot deformation behavior of TC17 ferroalloy was studied. The effects of strain rate and deformation temperature on the high temperature forming of TC17 titanium alloy were analyzed. The multiple linear regression constitutive model of TC17 titanium alloy was established. The results show that the flow stress of TC17 alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The theoretical value of peak stress obtained by the multiple linear regression constitutive model of TC17 alloy is in good agreement with the experimental results, and the correlation is 97,25%. The model has high prediction accuracy
Inelastic X-Ray Scattering Study of Exciton Properties in an Organic Molecular crystal
Excitons in a complex organic molecular crystal were studied by inelastic
x-ray scattering (IXS) for the first time. The dynamic dielectric response
function is measured over a large momentum transfer region, from which an
exciton dispersion of 130 meV is observed. Semiempirical quantum chemical
calculations reproduce well the momentum dependence of the measured dynamic
dielectric responses, and thus unambiguously indicate that the lowest Frenkel
exciton is confined within a fraction of the complex molecule. Our results
demonstrate that IXS is a powerful tool for studying excitons in complex
organic molecular systems. Besides the energy position, the IXS spectra provide
a stringent test on the validity of the theoretically calculated exciton wave
functions.Comment: 4 pages, 4 figure
Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems
Voltage-dependent ion channels determine the electric properties of axonal
cell membranes. They not only allow the passage of ions through the cell
membrane but also contribute to an additional charging of the cell membrane
resulting in the so-called capacitance loading. The switching of the channel
gates between an open and a closed configuration is intrinsically related to
the movement of gating charge within the cell membrane. At the beginning of an
action potential the transient gating current is opposite to the direction of
the current of sodium ions through the membrane. Therefore, the excitability is
expected to become reduced due to the influence of a gating current. Our
stochastic Hodgkin-Huxley like modeling takes into account both the channel
noise -- i.e. the fluctuations of the number of open ion channels -- and the
capacitance fluctuations that result from the dynamics of the gating charge. We
investigate the spiking dynamics of membrane patches of variable size and
analyze the statistics of the spontaneous spiking. As a main result, we find
that the gating currents yield a drastic reduction of the spontaneous spiking
rate for sufficiently large ion channel clusters. Consequently, this
demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page
Prediction of infrared light emission from pi-conjugated polymers: a diagrammatic exciton basis valence bond theory
There is currently a great need for solid state lasers that emit in the
infrared, as this is the operating wavelength regime for applications in
telecommunications. Existing --conjugated polymers all emit in the visible
or ultraviolet, and whether or not --conjugated polymers that emit in the
infrared can be designed is an interesting challenge. On the one hand, the
excited state ordering in trans-polyacetylene, the --conjugated polymer
with relatively small optical gap, is not conducive to light emission because
of electron-electron interaction effects. On the other hand, excited state
ordering opposite to that in trans-polyacetylene is usually obtained by
chemical modification that increases the effective bond-alternation, which in
turn increases the optical gap. We develop a theory of electron correlation
effects in a model -conjugated polymer that is obtained by replacing the
hydrogen atoms of trans-polyacetylene with transverse conjugated groups, and
show that the effective on-site correlation in this system is smaller than the
bare correlation in the unsubstituted system. An optical gap in the infrared as
well as excited state ordering conducive to light emission is thereby predicted
upon similar structural modifications.Comment: 15 pages, 15 figures, 1 tabl
Superconductivity up to 30 K in the vicinity of quantum critical point in BaFe(AsP)
We report bulk superconductivity induced by an isovalent doping of phosphorus
in BaFe(AsP). The P-for-As substitution results in
shrinkage of lattice, especially for the FeAs block layers. The resistivity
anomaly associated with the spin-density-wave (SDW) transition in the undoped
compound is gradually suppressed by the P doping. Superconductivity with the
maximum of 30 K emerges at =0.32, coinciding with a magnetic quantum
critical point (QCP) which is evidenced by the disappearance of SDW order and
the linear temperature-dependent resistivity in the normal state. The
values were found to decrease with further P doping, and no superconductivity
was observed down to 2 K for 0.77. The appearance of superconductivity
in the vicinity of QCP hints to the superconductivity mechanism in iron-based
arsenides.Comment: 9 pages, 4 figures; more data; to appear in Journal of Physics:
Condensed Matte
Analytical solutions to the third-harmonic generation in trans-polyacetylene: Application of dipole-dipole correlation on the single electron models
The analytical solutions for the third-harmonic generation (THG) on infinite
chains in both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models
of trans-polyacetylene are obtained through the scheme of dipole-dipole ()
correlation. They are not equivalent to the results obtained through static
current-current () correlation or under polarization operator
. The van Hove singularity disappears exactly in the analytical forms,
showing that the experimentally observed two-photon absorption peak (TPA) in
THG may not be directly explained by the single electron models.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
Superconductivity in LaFeAsPO: effect of chemical pressures and bond covalency
We report the realization of superconductivity by an isovalent doping with
phosphorus in LaFeAsO. X-ray diffraction shows that, with the partial
substitution of P for As, the FeAs layers are squeezed while the
LaO layers are stretched along the c-axis. Electrical resistance and
magnetization measurements show emergence of bulk superconductivity at 10
K for the optimally-doped LaFeAsPO (). The upper
critical fields at zero temperature is estimated to be 27 T, much higher than
that of the LaFePO superconductor. The occurrence of superconductivity is
discussed in terms of chemical pressures and bond covalency.Comment: 5 pages, 6 figures, more data presente
- …