7 research outputs found

    Design of Tissue-specific Cellular Microenvironments for Adipose-derived Stromal Cell Culture and Delivery

    Get PDF
    The development of in vitro cell culture models that investigate tissue-specific effects of the extracellular matrix (ECM) on stem/progenitor cell lineage-commitment can contribute towards the design of improved cell delivery strategies. This thesis developed processing methods that conserved ECM bioactivity to generate well-characterized 2- and 3-D culture platforms that facilitated the evaluation of ECM composition on the adipogenic and osteogenic differentiation of human adipose-derived stromal cells (ASCs). Initial work compared α-amylase and pepsin digestion as methods to fabricate ECM coatings. The effects of enzyme processing and ECM composition were explored using human decellularized adipose tissue (DAT) and bovine tendon collagen as matrix sources. The α-amylase-digested coatings were softer and more stable, with a complex composition and fibrillar architecture. ASCs cultured on α-amylase-digested ECM retained a spindle-shaped morphology, with enhanced proliferation on the α-amylase-digested DAT. Further, the α-amylase-digested DAT enhanced adipogenesis, based on adipogenic gene expression, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and perilipin staining under differentiation conditions. To further evaluate the effects of tissue-specific ECM composition on ASC differentiation, bovine trabecular bone was explored as a compositionally distinct ECM source. A detergent-free protocol was developed for obtaining decellularized trabecular bone (DTB). Immunohistochemical and biochemical techniques were used to compare the composition of the DTB and DAT, demonstrating higher levels of glycosaminoglycans in the DTB and enhanced expression of basement membrane proteins (collagen IV, laminin, collagen VI) in the DAT. To investigate the potential of applying a tissue-specific approach within a 3-D culture system, cryo-milled DAT or DTB particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels. ASC viability, adipogenesis and osteogenesis were assessed in the MCS+DAT, MCS+DTB and MCS alone. The findings indicated that the incorporation of DAT provided an adipo-conductive microenvironment, as seen by enhanced adipogenic gene expression, GPDH enzyme activity and intracellular lipid accumulation under differentiation conditions. The preliminary osteogenic data suggested that the DTB may have osteo-inductive effects, as seen by early stage osteogenic gene expression (OPN and ON) under proliferation conditions. ii Overall, this thesis provided a body of evidence supporting that tissue-specific ECM composition can be harnessed in biomaterials design to promote the lineage-specific differentiation of ASCs

    Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds

    Get PDF
    © Copyright © 2019 Shridhar, Amsden, Gillies and Flynn. While it has been postulated that tissue-specific bioscaffolds derived from the extracellular matrix (ECM) can direct stem cell differentiation, systematic comparisons of multiple ECM sources are needed to more fully assess the benefits of incorporating tissue-specific ECM in stem cell culture and delivery platforms. To probe the effects of ECM sourced from decellularized adipose tissue (DAT) or decellularized trabecular bone (DTB) on the adipogenic and osteogenic differentiation of human adipose-derived stem/stromal cells (ASCs), a novel detergent-free decellularization protocol was developed for bovine trabecular bone that complemented our established detergent-free decellularization protocol for human adipose tissue and did not require specialized equipment or prolonged incubation times. Immunohistochemical and biochemical characterization revealed enhanced sulphated glycosaminoglycan content in the DTB, while the DAT contained higher levels of collagen IV, collagen VI and laminin. To generate platforms with similar structural and biomechanical properties to enable assessment of the compositional effects of the ECM on ASC differentiation, micronized DAT and DTB were encapsulated with human ASCs within methacrylated chondroitin sulfate (MCS) hydrogels through UV-initiated crosslinking. High ASC viability (\u3e90%) was observed over 14 days in culture. Adipogenic differentiation was enhanced in the MCS+DAT composites relative to the MCS+DTB composites and MCS controls after 14 days of culture in adipogenic medium. Osteogenic differentiation studies revealed a peak in alkaline phosphatase (ALP) enzyme activity at 7 days in the MCS+DTB group cultured in osteogenic medium, suggesting that the DTB had bioactive effects on osteogenic protein expression. Overall, the current study suggests that tissue-specific ECM sourced from DAT or DTB can act synergistically with soluble differentiation factors to enhance the lineage-specific differentiation of human ASCs within 3-D hydrogel systems

    Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration

    No full text
    Decellularized scaffolds are promising clinically translational biomaterials that can be applied to direct cell responses and promote tissue regeneration. Bioscaffolds derived from the extracellular matrix (ECM) of decellularized tissues can naturally mimic the complex extracellular microenvironment through the retention of compositional, biomechanical, and structural properties specific to the native ECM. Increasingly, studies have investigated the use of ECM-derived scaffolds as instructive substrates to recapitulate properties of the stem cell niche and guide cell proliferation, paracrine factor production, and differentiation in a tissue specific manner. Here, we review the application of decellularized tissue scaffolds as instructive matrices for stem or progenitor cells, with a focus on the mechanisms through which ECM derived scaffolds can mediate cell behavior to promote tissue-specific regeneration. We conclude that although additional preclinical studies are required, ECM-derived scaffolds are a promising platform to guide cell behavior and may have widespread clinical applications in the field of regenerative medicine

    Design of tissue-specific extracellular matrix composite hydrogels for adipose-derived stem/stromal cell (ASC) delivery

    No full text
    © 2019 Omnipress - All rights reserved. Statement of Purpose: There is a compelling need to develop hydrogel cell delivery systems that incorporate tissue specific ECM as a cell instructive component, to enhance survival and direct cell function. Building from our previous work supporting the potential of composite bioscaffolds incorporating decellularized adipose tissue (DAT) within methacrylated chondroitin sulphate (MCS) hydrogels,1,2 the current study focused on investigating the effects of incorporating tissue-specific ECM sourced from DAT or decellularized trabecular bone (DTB) on encapsulated human ASCs. We hypothesized that incorporating tissue-specific ECM would provide an inductive microenvironment that would promote lineage-specific ASC differentiation

    Culture on Tissue-Specific Coatings Derived from α-Amylase-Digested Decellularized Adipose Tissue Enhances the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stromal Cells

    No full text
    © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim While extracellular matrix (ECM)-derived coatings have the potential to direct the response of cell populations in culture, there is a need to investigate the effects of ECM sourcing and processing on substrate bioactivity. To develop improved cell culture models for studying adipogenesis, the current study examines the proliferation and adipogenic differentiation of human adipose-derived stem/stromal cells (ASCs) on a range of ECM-derived coatings. Human decellularized adipose tissue (DAT) and commercially available bovine tendon collagen (COL) are digested with α-amylase or pepsin to prepare the coatings. Physical characterization demonstrates that α-amylase digestion generates softer, thicker, and more stable coatings, with a fibrous tissue-like ultrastructure that is lost in the pepsin-digested thin films. ASCs cultured on the α-amylase-digested ECM have a more spindle-shaped morphology, and proliferation is significantly enhanced on the α-amylase-digested DAT coatings. Further, the α-amylase-digested DAT provides a more pro-adipogenic microenvironment, based on higher levels of adipogenic gene expression, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and perilipin staining. Overall, this study supports α-amylase digestion as a new approach for generating bioactive ECM-derived coatings, and demonstrates tissue-specific bioactivity using adipose-derived ECM to enhance ASC proliferation and adipogenic differentiation

    Extracellular Matrix-Modified Fiber Scaffolds as a Proadipogenic Mesenchymal Stromal Cell Delivery Platform

    No full text
    Copyright © 2019 American Chemical Society. Melt electrowriting (MEW) is an additive manufacturing technology that produces readily handleable fibrous scaffolds with controlled geometry to support cell infiltration. Although MEW scaffolds have excellent potential for cell delivery in regenerative medicine applications, studies to date have primarily focused on polymers such as poly(ϵ-caprolactone) (PCL) that lack bioactive cues to affect cell function. To address this aspect, MEW scaffolds with extracellular matrix (ECM) coatings were developed as a proadipogenic platform for human mesenchymal stromal cells (hMSCs). More specifically, highly flexible PCL scaffolds fabricated through MEW were coated with a complex ECM suspension prepared from human decellularized adipose tissue (DAT), purified fibronectin, or laminin to determine the effects of two key bioactive proteins present within adipose-derived ECM. In vitro studies exploring the response of human bone marrow-derived mesenchymal stromal cells cultured under adipogenic differentiation conditions indicated a high level of differentiation on all substrates studied, including unmodified PCL scaffolds and two-dimensional controls. To more fully assess the intrinsic proadipogenic capacity of the composite biomaterials, a modified culture regime was established that involved a short-term adipogenic induction in differentiation medium, followed by continued culture in maintenance medium supplemented with insulin for up to 3 weeks. Under these conditions, adipogenic differentiation was enhanced on all fiber scaffolds as compared to the tissue culture controls. Notably, the highest adipogenic response was consistently observed on the PCL + DAT scaffolds, based on the analysis of multiple markers including adipogenic gene [lipoprotein lipase, fatty acid binding protein 4 (FABP4), adiponectin, perilipin 1] and protein (FABP4, leptin) expression and intracellular triglyceride accumulation. Taken together, the PCL scaffolds incorporating DAT provide an adipoinductive microenvironment for the hMSCs, with particular applicability of this cell-instructive delivery platform for applications in plastic and reconstructive surgery

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore