31 research outputs found
Laser Printing of Multilayered Alternately Conducting and Insulating Microstructures
Production of multilayered microstructures composed of conducting and insulating materials is of great interest as they can be utilized as microelectronic components. Current proposed fabrication methods of these microstructures include top-down and bottom-up methods, each having their own set of drawbacks. Laser-based methods were shown to pattern various materials with micron/sub-micron resolution; however, multilayered structures demonstrating conducting/insulating/conducting properties were not yet realized. Here, we demonstrate laser printing of multilayered microstructures consisting of conducting platinum and insulating silicon oxide layers by a combination of thermally driven reactions with microbubble-assisted printing. PtCl2 dissolved in N-methyl-2-pyrrolidone (NMP) was used as a precursor to form conducting Pt layers, while tetraethyl orthosilicate dissolved in NMP formed insulating silicon oxide layers identified by Raman spectroscopy. We demonstrate control over the height of the insulating layer between ∼50 and 250 nm by varying the laser power and number of iterations. The resistivity of the silicon oxide layer at 0.5 V was 1.5 × 1011 ωm. Other materials that we studied were found to be porous and prone to cracking, rendering them irrelevant as insulators. Finally, we show how microfluidics can enhance multilayered laser microprinting by quickly switching between precursors. The concepts presented here could provide new opportunities for simple fabrication of multilayered microelectronic devices
Structure Matters: Correlating Temperature Dependent Electrical Transport through Alkyl Monolayers with Vibrational and Photoelectron Spectroscopies
Freezing out of molecular motion and increased molecular tilt enhance the efficiency of electron transport through alkyl chain monolayers that are directly chemically bound to oxide-free Si. As a result, the current across such monolayers increases as the temperature decreases from room temperature to [similar]80 K, i.e., opposite to thermally activated transport such as hopping or semiconductor transport. The 30-fold change for transport through an 18-carbon long alkyl monolayer is several times the resistance change for actual metals over this range. FTIR vibrational spectroscopic measurements indicate that cooling increases the packing density and reduces the motional freedom of the alkyl chains by first stretching the chains and then gradually tilting the adsorbed molecules away from the surface normal. Ultraviolet photoelectron spectroscopy shows drastic sharpening of the valence band structure as the temperature decreases, which we ascribe to decreased electron–phonon coupling. Although conformational changes are typical in soft molecular systems, in molecular electronics they are rarely observed experimentally or considered theoretically. Our findings, though, indicate that the molecular conformational changes are a prominent feature, which imply behavior that differs qualitatively from that described by models of electronic transport through inorganic mesoscopic solid
Molecular Electronics at Metal/Semiconductor Junctions. Si Inversion by Sub-Nanometer Molecular Films
Electronic transport across n-Si-alkyl monolayer/Hg junctions is, at reverse and low forward bias, independent of alkyl chain length from 18 down to 1 or 2 carbons! This and further recent results indicate that electron transport is minority, rather than majority carrier dominated, occurs via generation and recombination, rather than (the earlier assumed) thermionic emission, and, as such, is rather insensitive to interface properties. The (m)ethyl results show that binding organic molecules directly to semiconductors provides semiconductor/metal interface control options, not accessible otherwise