8 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    EAnnot: A genome annotation tool using experimental evidence

    Get PDF
    The sequence of any genome becomes most useful for biological experimentation when a complete and accurate gene set is available. Gene prediction programs offer an efficient way to generate an automated gene set. Manual annotation, when performed by experienced annotators, is more accurate and complete than automated annotation. However, it is a laborious and expensive process, and by its nature, introduces a degree of variability not found with automated annotation. EAnnot (Electronic Annotation) is a program originally developed for manually annotating the human genome. It combines the latest bioinformatics tools to extract and analyze a wide range of publicly available data in order to achieve fast and reliable automatic gene prediction and annotation. EAnnot builds gene models based on mRNA, EST, and protein alignments to genomic sequence, attaches supporting evidence to the corresponding genes, identifies pseudogenes, and locates poly(A) sites and signals. Here, we compare manual annotation of human chromosome 6 with annotation performed by EAnnot in order to assess the latter's accuracy. EAnnot can readily be applied to manual annotation of other eukaryotic genomes and can be used to rapidly obtain an automated gene set

    Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study

    No full text
    N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s) of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts) were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc.)

    Generation and annotation of the DNA sequences of human chromosomes 2 and 4

    No full text

    Generation and annotation of the DNA sequences of human chromosomes 2 and 4

    No full text
    corecore