538 research outputs found
A paucigranulocytic asthma host environment promotes the emergence of virulent influenza viral variants
Influenza virus has a high mutation rate, such that within one host different viral variants can emerge. Evidence suggests that influenza virus variants are more prevalent in pregnant and/or obese individuals due to their impaired interferon response. We have recently shown that the non-allergic, paucigranulocytic subtype of asthma is associated with impaired type I interferon production. Here, we seek to address if this is associated with an increased emergence of influenza virus variants. Compared to controls, mice with paucigranulocytic asthma had increased disease severity and an increased emergence of influenza virus variants. Specifically, PB1 mutations exclusively detected in asthmatic mice were associated with increased polymerase activity. Furthermore, asthmatic host-derived virus led to increased disease severity in wild-type mice. Taken together, these data suggest that at least a subset of patients with asthma may be more susceptible to severe influenza and may be a possible source of new influenza virus variants
The Effect of High Glucocorticoid Administration and Food Restriction on Rodent Skeletal Muscle Mitochondrial Function and Protein Metabolism
Glucocorticoids levels are high in catabolic conditions but it is unclear how much of the catabolic effects are due to negative energy balance versus glucocorticoids and whether there are distinct effects on metabolism and functions of specific muscle proteins.We determined whether 14 days of high dose methylprednisolone (MPred, 4 mg/kg/d) Vs food restriction (FR, food intake matched to MPred) in rats had different effects on muscle mitochondrial function and protein fractional synthesis rates (FSR). Lower weight loss (15%) occurred in FR than in MPred (30%) rats, while a 15% increase occurred saline-treated Controls. The per cent muscle loss was significantly greater for MPred than FR. Mitochondrial protein FSR in MPred rats was lower in soleus (51 and 43%, respectively) and plantaris (25 and 55%) than in FR, while similar decline in protein FSR of the mixed, sarcoplasmic, and myosin heavy chain occurred. Mitochondrial enzymatic activity and ATP production were unchanged in soleus while in plantaris cytochrome c oxidase activity was lower in FR than Control, and ATP production rate with pyruvate + malate in MPred plantaris was 28% lower in MPred. Branched-chain amino acid catabolic enzyme activities were higher in both FR and MPred rats indicating enhanced amino acid oxidation capacity.MPred and FR had little impact on mitochondrial function but reduction in muscle protein synthesis occurred in MPred that could be explained on the basis of reduced food intake. A greater decline in proteolysis may explain lesser muscle loss in FR than in MPred rats
RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma
© 2017, eLife Sciences Publications Ltd. All rights reserved. Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target
Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology
Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions
Fine-Scale Genetic Structure Arises during Range Expansion of an Invasive Gecko
Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts
Food-Web Structure of Seagrass Communities across Different Spatial Scales and Human Impacts
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results
Speech Spectrum's Correlation with Speakers' Eysenck Personality Traits
The current study explored the correlation between speakers' Eysenck personality traits and speech spectrum parameters. Forty-six subjects completed the Eysenck Personality Questionnaire. They were instructed to verbally answer the questions shown on a computer screen and their responses were recorded by the computer. Spectrum parameters of /sh/ and /i/ were analyzed by Praat voice software. Formant frequencies of the consonant /sh/ in lying responses were significantly lower than that in truthful responses, whereas no difference existed on the vowel /i/ speech spectrum. The second formant bandwidth of the consonant /sh/ speech spectrum was significantly correlated with the personality traits of Psychoticism, Extraversion, and Neuroticism, and the correlation differed between truthful and lying responses, whereas the first formant frequency of the vowel /i/ speech spectrum was negatively correlated with Neuroticism in both response types. The results suggest that personality characteristics may be conveyed through the human voice, although the extent to which these effects are due to physiological differences in the organs associated with speech or to a general Pygmalion effect is yet unknown
Resistance Exercise Reverses Aging in Human Skeletal Muscle
Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training
- …