3,264 research outputs found
Tuning the stochastic background of gravitational waves using the WMAP data
The cosmological bound of the stochastic background of gravitational waves is
analyzed with the aid of the WMAP data, differently from lots of works in
literature, where the old COBE data were used. From our analysis, it will
result that the WMAP bounds on the energy spectrum and on the characteristic
amplitude of the stochastic background of gravitational waves are greater than
the COBE ones, but they are also far below frequencies of the earth-based
antennas band. At the end of this letter a lower bound for the integration time
of a potential detection with advanced LIGO is released and compared with the
previous one arising from the old COBE data. Even if the new lower bound is
minor than the previous one, it results very long, thus for a possible
detection we hope in the LISA interferometer and in a further growth in the
sensitivity of advanced projects.Comment: 9 pages, 2 figures, published in Modern Physics Letters A. arXiv
admin note: substantial text overlap with arXiv:0901.119
Non-classical photon pair generation in atomic vapours
A scheme for the generation of non-classical pairs of photons in atomic
vapours is proposed. The scheme exploits the fact that the cross correlation of
the emission of photons from the extreme transitions of a four-level cascade
system shows anti-bunching which has not been reported earlier and which is
unlike the case of the three level cascade emission which shows bunching. The
Cauchy-Schwarz inequality which is the ratio of cross-correlation to the auto
correlation function in this case is estimated to be for
controllable time delay, and is one to four orders of magnitude larger compared
to previous experiments. The choice of Doppler free geometry in addition to the
fact that at three photon resonance the excitation/deexcitation processes occur
in a very narrow frequency band, ensures cleaner signals.Comment: 18 pages, 7 figure
On the origin of microturbulence in hot stars
We present results from the first extensive study of convection zones in the
envelopes of hot massive stars, which are caused by opacity peaks associated
with iron and helium ionization. These convective regions can be located very
close to the stellar surface. Recent observations of microturbulence in massive
stars from the VLT-Flames survey are in good agreement with our predictions
concerning the occurrence and the strength of sub-surface convection in hot
stars. We argue further that convection close to the surface may trigger
clumping at the base of the stellar wind of massive stars.Comment: to appear in Comm. in Astroseismology - Proceedings of the 38th
LIAC/HELAS-ESTA/BAG, 200
Periodicity makes galactic shocks unstable - I. Linear analysis
We study the dynamical stability of stationary galactic spiral shocks. The
steady-state equilibrium flow contains a shock of the type derived by Roberts
in the tightly wound approximation. We find that boundary conditions are
critical in determining whether the solutions are stable or not. Shocks are
unstable if periodic boundary conditions are imposed. For intermediate
strengths of the spiral potential, the instability disappears if boundary
conditions are imposed such that the upstream flow is left unperturbed as in
the classic analysis of D'yakov and Kontorovich. This reconciles apparently
contradictory findings of previous authors regarding the stability of spiral
shocks. This also shows that the instability is distinct from the
Kelvin-Helmholtz instability, confirming the findings of Kim et al. We suggest
that instability is a general characteristics of periodic shocks, regardless of
the presence of shear, and provide a physical picture as to why this is the
case. For strong spiral potentials, high post-shock shear makes the system
unstable also to parasitic Kelvin-Helmholtz instability regardless of the
boundary conditions. Our analysis is performed in the context of a simplified
problem that, while preserving all the important characteristics of the
original problem, strips it from unnecessary complications, and assumes that
the gas is isothermal, non self-gravitating, non-magnetised.Comment: Accepted for publication in MNRA
The O I] 1641A line as a probe of symbiotic star winds
The neutral oxygen resonance 1302A line can, if the optical depth is
sufficiently high, de-excite by an intercombination transition at 1641A to a
metastable state. This has been noted in a number of previous studies but never
systematically investigated as a diagnostic of the neutral red giant wind in
symbiotic stars and symbiotic-like recurrent novae. We used archival high
resolution, and GHRS and STIS medium and high resolution, spectra to study a
sample of symbiotic stars. The integrated fluxes were measured, where possible,
for the O I 1302A and O I] 1641A lines. The intercombination 1641A line is
detected in a substantial number of symbiotic stars with optical depths that
give column densities comparable with direct eclipse measures (EG And) and the
evolution of the recurrent nova RS Oph 1985 in outburst. In four systems (EG
And, Z And, V1016 Cyg, and RR Tel), we find that the O I] variations are
strongly correlated with the optical light curve and outburst activity. This
transition can also be important for the study of a wide variety of sources in
which an ionization-bounded H II region is imbedded in an extensive neutral
medium, including active galactic nuclei, and not only for evaluations of
extinction.Comment: accepted for publication in Astronomy and Astrophysics (2010 Feb.
23), in press, NASA-GSFC-Code 66
A Dynamical Study of the Non-Star Forming Translucent Molecular Cloud MBM16: Evidence for Shear Driven Turbulence in the Interstellar Medium
We present the results of a velocity correlation study of the high latitude
cloud MBM16 using a fully sampled CO map, supplemented by new CO
data. We find a correlation length of 0.4 pc. This is similar in size to the
formaldehyde clumps described in our previous study. We associate this
correlated motion with coherent structures within the turbulent flow. Such
structures are generated by free shear flows. Their presence in this non-star
forming cloud indicates that kinetic energy is being supplied to the internal
turbulence by an external shear flow. Such large scale driving over long times
is a possible solution to the dissipation problem for molecular cloud
turbulence.Comment: Uses AAS aasms4.sty macros. Accepted for publication in Ap
Stimulated Raman Adiabatic Passage (STIRAP) Among Degenerate-Level Manifolds
We examine the conditions needed to accomplish stimulated Raman adiabatic
passage (STIRAP) when the three levels (g, e and f) are degenerate, with
arbitrary couplings contributing to the pump-pulse interaction (g - e) and to
the Stokes-pulse interaction (e-f). We show that in general a sufficient
condition for complete population removal from the g set of degenerate states
for arbitrary, pure or mixed, initial state is that the degeneracies should not
decrease along the sequence g, e and f. We show that when this condition holds
it is possible to achieve the degenerate counterpart of conventional STIRAP,
whereby adiabatic passage produces complete population transfer. Indeed, the
system is equivalent to a set of independent three-state systems, in each of
which a STIRAP procedure can be implemented. We describe a scheme of unitary
transformations that produces this result. We also examine the cases when this
degeneracy constraint does not hold, and show what can be accomplished in those
cases. For example, for angular momentum states when the degeneracy of the g
and f levels is less than that of the e level we show how a special choice for
the pulse polarizations and phases can produce complete removal of population
from the g set. Our scheme can be a powerful tool for coherent control in
degenerate systems, because of its robustness when selective addressing of the
states is not required or impossible. We illustrate the analysis with several
analytically solvable examples, in which the degeneracies originate from
angular momentum orientation, as expressed by magnetic sublevels.Comment: 21 pages, 17 figure
Dephasing effects on stimulated Raman adiabatic passage in tripod configurations
We present an analytic description of the effects of dephasing processes on
stimulated Raman adiabatic passage in a tripod quantum system. To this end, we
develop an effective two-level model. Our analysis makes use of the adiabatic
approximation in the weak dephasing regime. An effective master equation for a
two-level system formed by two dark states is derived, where analytic solutions
are obtained by utilizing the Demkov-Kunike model. From these, it is found that
the fidelity for the final coherent superposition state decreases exponentially
for increasing dephasing rates. Depending on the pulse ordering and for
adiabatic evolution the pulse delay can have an inverse effect.Comment: 13 pages; 9 figures; Accepted for publication Physical Review
Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models
This paper reports simulations allowing for stochastic accretion and mass
loss within closed and open systems modeled using a previously developed
multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star
formation rate is computed as a function of time directly from the model
equations and all chemical evolution is followed without instantaneous
recycling. Several types of simulations are presented here: (1) a closed system
with bursty mass loss from the halo to the thick disk, and from the thick to
the thin disk, in separate events to the thin disk; (2) open systems with
random environmental (extragalactic) accretion, e.g. by infall of high velocity
clouds directly to the thin disk; (3) schematic open system single and multiple
collision events and intracluster stripping. For the open models, the mass of
the Galaxy has been explicitly tracked with time. We present the evolution of
the star formation rate, metallicity histories, and concentrate on the light
elements. We find a wide range of possible outcomes, including an explanation
for variations in the Galactic D/H ratio, and highlight the problems for
uniquely reconstructing star forming histories from contemporary abundance
measurements.Comment: 12 pages, 12 Postscript figures, uses A&A style macros. Accepted for
publication by Astronomy & Astrophysic
- âŠ