5 research outputs found
Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration
Purpose: The aim of this study is to evaluate the efficiency of applying a new non-rigid image registration method on two-dimensional echocardiographic images for computing the left ventricle (LV) myocardial motion field over a cardiac cycle. Methods: The key feature of our method is to register all images in the sequence to a reference image (end-diastole image) using a hierarchical transformation model, which is a combination of an affine transformation for modeling the global LV motion and a free-form deformation (FFD) transformation based on B-splines for modeling the local LV deformation. Registration is done by minimizing a cost function associated with the image similarity based on a global pixel-based matching and the smoothness of transformation. The algorithm uses a fast and robust optimization strategy using a multiresolution approach for the estimation of parameters of the deformation model. The proposed algorithm is evaluated for calculating the displacement curves of two expert-identified anatomical landmarks in apical views of the LV for 10 healthy volunteers and 14 subjects with pathology. The proposed algorithm is also evaluated for classifying the regional LV wall motion abnormality using the calculation of the strain value at the end of systole in 288 segments as scored by two consensual experienced echocardiographers in a three-point scale: 1: normokinesia, 2: hypokinesia, and 3: akinesia. Moreover, we compared the results of the proposed registration algorithm to those previously obtained using the other image registration methods. Results: Regarding to the reference two experienced echocardiographers, the results demonstrate the proposed algorithm more accurately estimates the displacement curve of the two anatomical landmarks in apical views than the other registration methods in all data set. Moreover, the p values of the t test for the strain value of each segment at the end of systole measured by the proposed algorithm show higher differences than the other registration method. These differences are between each pair of scores in all segments and in three segments of septum independently. Conclusions: The clinical results show that the proposed algorithm can improve both the calculation of the displacement curve of every point of LV during a cardiac cycle and the classification of regional LV wall motion abnormality. Therefore, this diagnostic system can be used as a useful tool for clinical evaluation of the regional LV function. © 2012 CARS
Automatic assessment of regional and global wall motion abnormalities in echocardiography images by nonlinear dimensionality reduction
Purpose: Identification and assessment of left ventricular (LV) global and regional wall motion (RWM) abnormalities are essential for clinical evaluation of various cardiovascular diseases. Currently, this evaluation is performed visually which is highly dependent on the training and experience of echocardiographers and thus is prone to considerable interobserver and intraobserver variability. This paper presents a new automatic method, based on nonlinear dimensionality reduction (NLDR) for global wall motion evaluation and also detection and classification of RWM abnormalities of LV wall in a three-point scale as follows: (1) normokinesia, (2) hypokinesia, and (3) akinesia. Methods: Isometric feature mapping (Isomap) is one of the most popular NLDR algorithms. In this paper, a modified version of Isomap algorithm, where image to image distance metric is computed using nonrigid registration, is applied on two-dimensional (2D) echocardiography images of one cycle of heart. By this approach, nonlinear information in these images is embedded in a 2D manifold and each image is characterized by a point on the constructed manifold. This new representation visualizes the relationship between these images based on LV volume changes. Then, a new global and regional quantitative index from the resultant manifold is proposed for global wall motion estimation and also classification of RWM of LV wall in a three-point scale. Obtained results by our method are quantitatively evaluated to those obtained visually by two experienced echocardiographers as the reference (gold standard) on 10 healthy volunteers and 14 patients. Results: Linear regression analysis between the proposed global quantitative index and the global wall motion score index and also with LV ejection fraction obtained by reference experienced echocardiographers resulted in the correlation coefficients of 0.85 and 0.90, respectively. Comparison between the proposed automatic RWM scoring and the reference visual scoring resulted in an absolute agreement of 82 and a relative agreement of 97. Conclusions: The proposed diagnostic method can be used as a useful tool as well as a reference visual assessment by experienced echocardiographers for global wall motion estimation and also classification of RWM abnormalities of LV wall in a three-point scale in clinical evaluations. © 2013 American Association of Physicists in Medicine
Automatic classification of left ventricular regional wall motion abnormalities in echocardiography images using nonrigid image registration
Identification and classification of left ventricular (LV) regional wall motion (RWM) abnormalities on echocardiograms has fundamental clinical importance for various cardiovascular disease assessments especially in ischemia. In clinical practice, this evaluation is still performed visually which is highly dependent on training and experience of the echocardiographers and therefore suffers from significant interobserver and intraobserver variability. This paper presents a new automatic technique, based on nonrigid image registration for classifying the RWM of LV in a three-point scale. In this algorithm, we register all images of one cycle of heart to a reference image (end-diastolic image) using a hierarchical parametric model. This model is based on an affine transformation for modeling the global LV motion and a B-spline free-form deformation transformation for modeling the local LV deformation. We consider image registration as a multiresolution optimization problem. Finally, a new regional quantitative index based on resultant parameters of the hierarchical transformation model is proposed for classifying RWM in a three-point scale. The results obtained by our method are quantitatively evaluated to those obtained by two experienced echocardiographers visually as gold standard on ten healthy volunteers and 14 patients (two apical views) and resulted in an absolute agreement of 83 and a relative agreement of 99 . Therefore, this diagnostic system can be used as a useful tool as well as reference visual assessment to classify RWM abnormalities in clinical evaluation. © 2013 Society for Imaging Informatics in Medicine
THE CLINICAL POLYMORPHISM AND TREATMENT STRATEGY IN A LARGE FAMILY WITH BRUGADA SYNDROME
Brugada syndrome (BrS) is an inherited arrhythmia characterized by ST-segment elevation in V1-V2 leads followed by negative T-wave on standard ECG, and high risk of ventricular tachyarrhythmias and sudden cardiac death (SCD). A wide range of supraventricular arrhythmias and conduction disturbances was described for BrS. The disease was considered of the high frequency in Southeast Asia, but current estimation of BrS is at least 1:10 000 in all ethnic groups. At least 17 genes are known to be responsible for BrS. Approximately 15-30% of individuals with Brugada syndrome cases are affected by mutations in SCN5A gene. In this study we discuss the clinical polymorphism and surgical treatment in a large family with Brugada syndrome caused by p.A735V mutation in SCN5A gene