5,317 research outputs found
Precession during merger 1: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger
The short gravitational wave signal from the merger of compact binaries
encodes a surprising amount of information about the strong-field dynamics of
merger into frequencies accessible to ground-based interferometers. In this
paper we describe a previously-unknown "precession" of the peak emission
direction with time, both before and after the merger, about the total angular
momentum direction. We demonstrate the gravitational wave polarization encodes
the orientation of this direction to the line of sight. We argue the effects of
polarization can be estimated nonparametrically, directly from the
gravitational wave signal as seen along one line of sight, as a slowly-varying
feature on top of a rapidly-varying carrier. After merger, our results can be
interpreted as a coherent excitation of quasinormal modes of different angular
orders, a superposition which naturally "precesses" and modulates the
line-of-sight amplitude. Recent analytic calculations have arrived at a similar
geometric interpretation. We suspect the line-of-sight polarization content
will be a convenient observable with which to define new high-precision tests
of general relativity using gravitational waves. Additionally, as the nonlinear
merger process seeds the initial coherent perturbation, we speculate the
amplitude of this effect provides a new probe of the strong-field dynamics
during merger. To demonstrate the ubiquity of the effects we describe, we
summarize the post-merger evolution of 104 generic precessing binary mergers.
Finally, we provide estimates for the detectable impacts of precession on the
waveforms from high-mass sources. These expressions may identify new precessing
binary parameters whose waveforms are dissimilar from the existing sample.Comment: 11 figures; v2 includes response to referee suggestion
Intrinsic selection biases of ground-based gravitational wave searches for high-mass BH-BH mergers
The next generation of ground-based gravitational wave detectors may detect a
few mergers of comparable-mass M\simeq 100-1000 Msun ("intermediate-mass'', or
IMBH) spinning black holes. Black hole spin is known to have a significant
impact on the orbit, merger signal, and post-merger ringdown of any binary with
non-negligible spin. In particular, the detection volume for spinning binaries
depends significantly on the component black hole spins. We provide a fit to
the single-detector and isotropic-network detection volume versus (total) mass
and arbitrary spin for equal-mass binaries. Our analysis assumes matched
filtering to all significant available waveform power (up to l=6 available for
fitting, but only l<= 4 significant) estimated by an array of 64 numerical
simulations with component spins as large as S_{1,2}/M^2 <= 0.8. We provide a
spin-dependent estimate of our uncertainty, up to S_{1,2}/M^2 <= 1. For the
initial (advanced) LIGO detector, our fits are reliable for
(). In the online version of this
article, we also provide fits assuming incomplete information, such as the
neglect of higher-order harmonics. We briefly discuss how a strong selection
bias towards aligned spins influences the interpretation of future
gravitational wave detections of IMBH-IMBH mergers.Comment: 18 pages, 15 figures, accepted by PRD. v2 is version accepted for
publication, including minor changes in response to referee feedback and
updated citation
Research core drilling in the Manson impact structure, Iowa
The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence
Chemical fractionation of siderophile elements in impactites from Australian meteorite craters
The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process
Study of flight management requirements during SST low visibility approach and landing operations. Volume 1 - Definition of baseline SST landing system
Baseline instrument landing system for low visibility approach and landing of supersonic transport
Central Versus Peripheral Cardiovascular Risk in Metabolic Syndrome
Individuals with metabolic syndrome (MetS; i.e., three of five of the following risk factors (RFs): elevated blood pressure, waist circumference, triglycerides, blood glucose, or reduced HDL) are thought to be prone to serious cardiovascular disease and there is debate as to whether the disease begins in the peripheral vasculature or centrally. This study investigates hemodynamics, cardiac function/morphology, and mechanical properties of the central (heart, carotid artery) or peripheral [total peripheral resistance (TPR), forearm vascular bed] vasculature in individuals without (1–2 RFs: n = 28), or with (≥3 RFs: n = 46) MetS. After adjustments for statin and blood pressure medication use, those with MetS had lower mitral valve E/A ratios (<3 RFs: 1.24 ± 0.07; ≥3 RFs: 1.01 ± 0.04; P = 0.025), and higher TPR index (<3 RFs: 48 ± 2 mmHg/L/min/m2; ≥3 RFs: 53 ± 2 mmHg/L/min/m2; P = 0.04). There were no differences in heart size, carotid artery measurements, cardiovagal baroreflex, pulse-wave velocity, stroke volume index, or cardiac output index due to MetS after adjustments for statin and blood pressure medication use. The use of statins was associated with increased inertia in the brachial vascular bed, increased HbA1c and decreased LDL cholesterol. The independent use of anti-hypertensive medication was associated with decreased predicted VO2max, triglycerides, diastolic blood pressure, interventricular septum thickness, calculated left ventricle mass, left ventricle posterior wall thickness, and left ventricle pre-ejection period, but increased carotid stiffness, HDL cholesterol, and heart rate. These data imply that both a central cardiac effect and a peripheral effect of vascular resistance are expressed in MetS. These data also indicate that variance in between-group responses due to pharmacological treatments are important factors to consider in studying cardiovascular changes in these individuals
Radiation from low-momentum zoom-whirl orbits
We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries
in full general relativity. The magnitude of the linear momentum of the initial
data is fixed to that of a quasi-circular orbit, and its direction is varied.
We find a global maximum in radiated energy for a configuration which completes
roughly one orbit. The radiated energy in this case exceeds the value of a
quasi-circular binary with the same momentum by 15%. The direction parameter
only requires minor tuning for the localization of the maximum. There is
non-trivial dependence of the energy radiated on eccentricity (several local
maxima and minima). Correlations with orbital dynamics shortly before merger
are discussed. While being strongly gauge dependent, these findings are
intuitive from a physical point of view and support basic ideas about the
efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe
Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation
There is strong evidence indicating that the particular form used to recast
the Einstein equation as a 3+1 set of evolution equations has a fundamental
impact on the stability properties of numerical evolutions involving black
holes and/or neutron stars. Presently, the longest lived evolutions have been
obtained using a parametrized hyperbolic system developed by Kidder, Scheel and
Teukolsky or a conformal-traceless system introduced by Baumgarte, Shapiro,
Shibata and Nakamura. We present a new conformal-traceless system. While this
new system has some elements in common with the
Baumgarte-Shapiro-Shibata-Nakamura system, it differs in both the type of
conformal transformations and how the non-linear terms involving the extrinsic
curvature are handled. We show results from 3D numerical evolutions of a
single, non-rotating black hole in which we demonstrate that this new system
yields a significant improvement in the life-time of the simulations.Comment: 7 pages, 2 figure
Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes
The sensitivity of next-generation gravitational-wave detectors such as
Advanced LIGO and LCGT should be limited mostly by quantum noise with an
expected technical progress to reduce seismic noise and thermal noise. Those
detectors will employ the optical configuration of resonant-sideband-extraction
that can be realized with a signal-recycling mirror added to the Fabry-Perot
Michelson interferometer. While this configuration can reduce quantum noise of
the detector, it can possibly increase laser frequency noise and intensity
noise. The analysis of laser noise in the interferometer with the conventional
configuration has been done in several papers, and we shall extend the analysis
to the resonant-sideband-extraction configuration with the radiation pressure
effect included. We shall also refer to laser noise in the case we employ the
so-called DC readout scheme.Comment: An error in Fig. 10 in the published version in PRD has been
corrected in this version; an erratum has been submitted to PRD. After
correction, this figure reflects a significant difference in the ways RF and
DC readout schemes are susceptible to laser noise. In addition, the levels of
mirror loss imbalances and input laser amplitude noise have also been updated
to be more realistic for Advanced LIG
- …