5 research outputs found

    GENOME-WIDE ANALYSIS OF LONG NON-CODING RNA (LNCRNA) OF AUTOIMMUNE THYROID DISEASES USING BIOINFORMATICS APPROACHES

    Get PDF
    Objective: Long non-coding RNA's (lncRNA's) have a crucial role in cancer biology. In this study, the genome sequence analysis of lncRNA expression in autoimmune thyroid disease is done to identify novel targets for further study of the disease.Methods: All the data were collected from Disgenet and Ensemble genome browser. Gene ontology and network analysis were performed using the standard enrichment annotation method. Association of lncRNA and their targeted mRNA were analyzed by GENEMANIA.Results: Of the all 334 lncRNA transcripts identified, only four had coding potential. LncRNA'stranscripts ENST00000462973, ENST00000555326 were involved in autoimmune thyroid disease pathway which corresponds to thyroid peroxidase (TPO) and thyroid-stimulating hormone receptor (TSHR), and this could provide better insights to therapeutics.Conclusion: Our current study on the potential link between lncRNAs and autoimmune thyroid disease presents a novel area for further investigations into the target genes of such lncRNAs, leading to therapeutic strategies for the disease.Keywords: lncRNA, Autoimmune thyroid disease, GENEMANI

    In silico Structural and Functional Characterization of a Hypothetical Protein from Stenotrophomonas maltophilia SRM01

    Get PDF
    Stenotrophomonas maltophilia is a low-virulence opportunistic pathogen that causes human infections, especially in profound ill patients. Even if the bacterial genomes seem understood, the activities of many proteins are unknown. The purpose of our current research is to unravel the functional characteristics i.e. functional domain search and valuable regions of a hypothetical protein that would aid in the identification of potential drug targets in Stenotrophomonas maltophilia. The hypothetical protein of S.maltophilia was located and annotated using different in silico techniques. Our target protein was predicted to be Transcrip Reg superfamily YebC/PmpR based on motif and domain analysis by functional annotation tools. The regulator proteins of the YebC family are part of a vast collection of widely conserved hypothetical proteins with unclear functions. Examining and reviewing the function of YebC family protein, they repress Quorum sensing by directly binding to the promoter region of QS master regulator pqrS. It has also been reported that T3SS expression is regulated by YebC, to activate the virulence expression direct interaction with one of the T3SS promoters is needed
    corecore