14 research outputs found

    Radio emission of the Galactic X-rays binaries with relativistic jets

    Full text link
    Variable non-thermal radio emission from Galactic X-ray binaries is a trace of relativistic jets, created near accretion disks. The spectral characteristics of a lot of radio flares in the X-ray binaries with jets (RJXB) is discussed in this report. We carried out several long daily monitoring programs with the RATAN-600 radio telescope of the sources: SS433, Cyg X-3, LSI+61o303, GRS 1915+10 and some others. We also reviewed some data from the GBI monitoring program at two frequencies and hard X-ray BATSE (20-100 keV) and soft X-ray RTXE (2-12 keV) ASM data. We confirmed that flaring radio emission of Cyg X-3 correlated with hard and anti-correlated with soft X-ray emission during the strong flare (>Jy)inMay1997.DuringtwoorbitalperiodsweinvestigatedradiolightcurvesoftheremarkableX−binaryLSI+61o303.Twoflaringeventsnearaphase0.6ofthe26.5−dayorbitalperiodhavebeendetectedforfirsttimeatfourfrequenciessimultaneously.PowerfulflaringeventsofSS433weredetectedatsixfrequenciesinMay1996andinMay1999.Thedecayoftheflareisexactlyfittedbyanexponentiallawandtherateofthedecay Jy) in May 1997. During two orbital periods we investigated radio light curves of the remarkable X-binary LSI+61o303. Two flaring events near a phase 0.6 of the 26.5-day orbital period have been detected for first time at four frequencies simultaneously. Powerful flaring events of SS433 were detected at six frequencies in May 1996 and in May 1999. The decay of the flare is exactly fitted by an exponential law and the rate of the decay \tau$ depends upon frequency as tau \propto \nu^{-0.4} in the first flare and does not depend upon frequency in the second flare, and is equal to \tau=6+-1 days at frequencies from 0.96 to 21.7 GHz in the last flare in May 1999. Many flaring RJXB show two, exponential and power, laws of flare decay. Moreover, these different laws could be present in one or several flares and commonly flare decays are faster at a higher frequency. The decay law seems to change because of geometric form of the conical hollow jets. The synchrotron and inverse Compton losses could explain general frequency dependences in flare evolution. In conclusion we summarized the general radio properties of RJXB.Comment: 10 pages, LaTeX, 14 Postscript figures, talk given at the Gamov Memorial International Conference (GMIC'99) "Early Universe: Cosmological Problems and Instrumental Technologies" in St.Petersburg, 23-27 August, 1999, to appear in Astron. Astrophys. Trans., 200

    Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films

    Full text link
    We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using spatially resolved heavy ion irradiation. Structures consisting of a periodic array of strong and weak pinning channels were created with the help of metal masks. The channels formed an angle of +/-45 Deg with respect to the symmetry axis of the photolithographically patterned structures. Investigations of the anisotropic transport properties of these structures were performed. We found striking resemblance to guided vortex motion as it was observed in YBCO single crystals containing an array of unidirected twin boundaries. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution of the Hall patterning. In contrast to the unidirected twin boundaries in our experiment both strong and weak pinning regions are spatially extended. The interfaces between unirradiated and irradiated regions therefore form a Bose-glass contact. The experimentally observed magnetic field dependence of the transverse voltage vanishes faster than expected from the numerical simulation and we interpret this as a hydrodynamical interaction between a Bose-glass phase and a vortex liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR

    The Magnetized Universe

    Full text link
    Cosmology, high-energy physics and astrophysics are converging on the study of large-scale magnetic fields. While the experimental evidence for the existence of large-scale magnetization in galaxies, clusters and superclusters is rather compelling, the origin of the phenomenon remains puzzling especially in light of the most recent observations. The purpose of the present review is to describe the physical motivations and some of the open theoretical problems related to the existence of large-scale magnetic fields.Comment: 147 pages, 10 included figures. Few corrected typos and added reference

    Cosmic radio waves

    No full text

    Cosmic Radio Waves

    No full text
    corecore