176 research outputs found

    Improving Facial Action Unit Recognition Using Convolutional Neural Networks

    Get PDF
    Recognizing facial action units (AUs) from spontaneous facial expression is a challenging problem, because of subtle facial appearance changes, free head movements, occlusions, and limited AU-coded training data. Most recently, convolutional neural networks (CNNs) have shown promise on facial AU recognition. However, CNNs are often overfitted and do not generalize well to unseen subject due to limited AU-coded training images. In order to improve the performance of facial AU recognition, we developed two novel CNN frameworks, by substituting the traditional decision layer and convolutional layer with the incremental boosting layer and adaptive convolutional layer respectively, to recognize the AUs from static image. First, in order to handle the limited AU-coded training data and reduce the overfitting, we proposed a novel Incremental Boosting CNN (IB-CNN) to integrate boosting into the CNN via an incremental boosting layer that selects discriminative neurons from the lower layer and is incrementally updated on successive mini-batches. In addition, a novel loss function that accounts for errors from both the incremental boosted classifier and individual weak classifiers was proposed to fine-tune the IBCNN. Experimental results on four benchmark AU databases have demonstrated that the IB-CNN yields significant improvement over the traditional CNN and the boosting CNN without incremental learning, as well as outperforming the state-of-the-art CNN-based methods in AU recognition. The improvement is more impressive for the AUs that have the lowest frequencies in the databases. Second, all current CNNs use predefined and fixed convolutional filter size. However, AUs activated by different facial muscles cause facial appearance changes at different scales and thus favor different filter sizes. The traditional strategy is to experimentally select the best filter size for each AU in each convolutional layer, but it suffers from expensive training cost, especially when the networks become deeper and deeper. We proposed a novel Optimized Filter Size CNN (OFS-CNN), where the filter sizes and weights of all convolutional layers are learned simultaneously from the training data along with learning convolutional filters. Specifically, the filter size is defined as a continuous variable, which is optimized by minimizing the training loss. Experimental results on four AU-coded databases and one spontaneous facial expression database outperforms traditional CNNs with fixed filter sizes and achieves state-of-the-art recognition performance. Furthermore, the OFS-CNN also beats traditional CNNs using the best filter size obtained by exhaustive search and is capable of estimating optimal filter size for varying image resolution

    Optimizing Filter Size in Convolutional Neural Networks for Facial Action Unit Recognition

    Full text link
    Recognizing facial action units (AUs) during spontaneous facial displays is a challenging problem. Most recently, Convolutional Neural Networks (CNNs) have shown promise for facial AU recognition, where predefined and fixed convolution filter sizes are employed. In order to achieve the best performance, the optimal filter size is often empirically found by conducting extensive experimental validation. Such a training process suffers from expensive training cost, especially as the network becomes deeper. This paper proposes a novel Optimized Filter Size CNN (OFS-CNN), where the filter sizes and weights of all convolutional layers are learned simultaneously from the training data along with learning convolution filters. Specifically, the filter size is defined as a continuous variable, which is optimized by minimizing the training loss. Experimental results on two AU-coded spontaneous databases have shown that the proposed OFS-CNN is capable of estimating optimal filter size for varying image resolution and outperforms traditional CNNs with the best filter size obtained by exhaustive search. The OFS-CNN also beats the CNN using multiple filter sizes and more importantly, is much more efficient during testing with the proposed forward-backward propagation algorithm

    Genomic value prediction for quantitative traits under the epistatic model

    Get PDF
    Abstract Background Most quantitative traits are controlled by multiple quantitative trait loci (QTL). The contribution of each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that uses markers of the entire genome to predict the genomic values of individual plants or animals can be more efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a quantitative trait is contributed by epistatic effects, using all markers (main effects) and marker pairs (epistatic effects) to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement. Results In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the genome. We applied the genome selection technique to predict the genomic value of somatic embryo number (a quantitative trait) for each line. Cross validation analysis showed that the squared correlation coefficient between the observed and predicted embryo numbers was 0.33 when only main (additive) effects were used for prediction. When the interaction (epistatic) effects were also included in the model, the squared correlation coefficient reached 0.78. Conclusions This study provided an excellent example for the application of genome selection to plant breeding

    PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained Image-Language Models

    Full text link
    Generalizable 3D part segmentation is important but challenging in vision and robotics. Training deep models via conventional supervised methods requires large-scale 3D datasets with fine-grained part annotations, which are costly to collect. This paper explores an alternative way for low-shot part segmentation of 3D point clouds by leveraging a pretrained image-language model, GLIP, which achieves superior performance on open-vocabulary 2D detection. We transfer the rich knowledge from 2D to 3D through GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm. We also utilize multi-view 3D priors and few-shot prompt tuning to boost performance significantly. Extensive evaluation on PartNet and PartNet-Mobility datasets shows that our method enables excellent zero-shot 3D part segmentation. Our few-shot version not only outperforms existing few-shot approaches by a large margin but also achieves highly competitive results compared to the fully supervised counterpart. Furthermore, we demonstrate that our method can be directly applied to iPhone-scanned point clouds without significant domain gaps.Comment: CVPR 2023, project page: https://colin97.github.io/PartSLIP_page

    Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Get PDF
    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations. Nat Commun 2018 Feb 16; 9(1):702
    corecore