1,286 research outputs found
Method for producing heat-resistant semi-inorganic compounds
The method for producing a heat resistant, semi-inorganic compound is discussed. Five examples in which various alcohols, phenols, and aromatic carbonic acids are used to test heat resistance and solubility are provided
Organometalic carbosilane polymers containing vanadium and their preparation
The present invention concerns a new organometallic polymer material containing in part a vanadium-siloxane linkage (V-0-Si), which has excellent resistance to heat and oxidation and a high residue ratio after high temperature treatment in a non-oxidizing atmosphere, for example, nitrogen, argon, helium, ammonia, or hydrogen
Evolution of Paramagnetic Quasiparticle Excitations Emerged in the High-Field Superconducting Phase of CeCoIn5
We present In NMR measurements in a novel thermodynamic phase of CeCoIn5 in
high magnetic field, where exotic superconductivity coexists with the
incommensurate spin-density wave order. We show that the NMR spectra in this
phase provide direct evidence for the emergence of the spatially distributed
normal quasiparticle regions. The quantitative analysis for the field evolution
of the paramagnetic magnetization and newly-emerged low-energy quasiparticle
density of states is consistent with the nodal plane formation, which is
characterized by an order parameter in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state. The NMR spectra also suggest that the spatially uniform
spin-density wave is induced in the FFLO phase.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
Unconventional superconductivity and antiferromagnetic quantum critical behavior in the isovalent-doped BaFe2(As1-xPx)2
Spin dynamics evolution of BaFe(AsP) was probed as a
function of P concentration via P NMR. Our NMR study reveals that
two-dimensional antiferromagnetic (AF) fluctuations are notably enhanced with
little change in static susceptibility on approaching the AF phase from the
superconducting dome. Moreover, magnetically ordered temperature
deduced from the relaxation rate vanishes at optimal doping. These results
provide clear-cut evidence for a quantum-critical point (QCP), suggesting that
the AF fluctuations associated with the QCP play a central role in the
high- superconductivity.Comment: 5 pages, 3 figure
Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn_5
To study the nature of partially substituted Yb-ions in a Ce-based Kondo
lattice, we fabricated high quality Ce_{1-x}Yb_xCoIn_5 epitaxial thin films
using molecular beam epitaxy. We find that the Yb-substitution leads to a
linear decrease of the unit cell volume, indicating that Yb-ions are divalent
forming Kondo-holes in Ce_{1-x}Yb_xCoIn_5, and leads to a strong suppression of
the superconductivity and Kondo coherence. These results, combined with the
measurements of Hall effect, indicate that Yb-ions act as nonmagnetic impurity
scatters in the coherent Kondo lattice without serious suppression of the
antiferromagnetic fluctuations. These are in stark contrast to previous studies
performed using bulk single crystals, which claim the importance of valence
fluctuations of Yb-ions. The present work also highlights the suitability of
epitaxial films in the study of the impurity effect on the Kondo lattice.Comment: 5 pages, 4 figure
Strong-coupling theory of superconductivity in a degenerate Hubbard model
In order to discuss superconductivity in orbital degenerate systems, a
microscopic Hamiltonian is introduced. Based on the degenerate model, a
strong-coupling theory of superconductivity is developed within the fluctuation
exchange (FLEX) approximation where spin and orbital fluctuations, spectra of
electron, and superconducting gap function are self-consistently determined.
Applying the FLEX approximation to the orbital degenerate model, it is shown
that the -wave superconducting phase is induced by increasing the
orbital splitting energy which leads to the development and suppression of the
spin and orbital fluctuations, respectively. It is proposed that the orbital
splitting energy is a controlling parameter changing from the paramagnetic to
the antiferromagnetic phase with the -wave superconducting phase
in between.Comment: 4 figures, submitted to PR
Controllable Rashba spin-orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5
By using a molecular beam epitaxy technique, we fabricate a new type of
superconducting superlattices with controlled atomic layer thicknesses of
alternating blocks between heavy fermion superconductor CeCoIn_5, which
exhibits a strong Pauli pair-breaking effect, and nonmagnetic metal YbCoIn_5.
The introduction of the thickness modulation of YbCoIn_5 block layers breaks
the inversion symmetry centered at the superconducting block of CeCoIn_5. This
configuration leads to dramatic changes in the temperature and angular
dependence of the upper critical field, which can be understood by considering
the effect of the Rashba spin-orbit interaction arising from the inversion
symmetry breaking and the associated weakening of the Pauli pair-breaking
effect. Since the degree of thickness modulation is a design feature of this
type of superlattices, the Rashba interaction and the nature of pair-breaking
are largely tunable in these modulated superlattices with strong spin-orbit
coupling.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let
- …