15 research outputs found

    Micro helical polymeric structures produced by variable voltage direct electrospinning

    Full text link
    Direct near field electrospinning is used to produce very long helical polystyrene microfibers in water. The pitch length of helices can be controlled by changing the applied voltage, allowing to produce both micro springs and microchannels. Using a novel high frequency variable voltage electrospinning method we found the helix formation speed and compared the experimental buckling frequency to theoretical expressions for viscous and elastic buckling. Finally we showed that the newmethod can be used to produce new periodic micro and nano structures.Comment: accepted for publication in Soft Matte

    Liquid bulk rotation induced by electric field at free surface

    Get PDF
    In this paper, we induce rotation in a bulk of polar liquid with one free surface, by applying external crossed electric fields. We show that the induced rotation is due to the imposed stresses at the free surface of the liquid. A simple theoretical model was developed based on solving the Navier-Stokes equation that enables us to calculate the average induced stress in the liquid bulk, using experimental measurements of the angular velocity of the liquid. Our results indicate that the induced stresses and the angular velocities of the rotating liquid are independent from the electrical conductivity of the liquid. However, the induced stresses linearly depend on the external electric field and the applied electric voltage for passing the electric current through the bulk. Both experimental results and the theoretical model show that the angular velocity, linearly changes with depth. © 2015 AIP Publishing LLC

    Rotation of the free layer of titanium dioxide nano-fluid in an external electric field

    No full text
    In this paper, the effect of titanium dioxide nanoparticles on the response of the freely suspended nano-fluid was investigated in an external electric field. Applying  the external electric field to liquid film carrying electric current caused the layer rotation. It was due to the surface charge response of the layer to the electric field. The effect of surface charge on titanium dioxide nano-fluid rotation at various concentrations was studied. The results showed that the presence of nanoparticles in the fluid doubled the rotation velocity. Also, the effect of ultraviolet radiation on the rotation velocity of the fluid was examined, showing that there was no significant impact on rotation velocity. Finally, the needed time to reach the maximum rotation velocity of the nano-fluids layers was measured&nbsp

    Rotation induced by uniform and non-uniform magnetic fields in a conducting fluid carrying an electric current

    Get PDF
    We study the dynamics of a conducting fluid carrying (i) a uniform current in the presence of a non-uniform magnetic field or (ii) carrying a non-uniform current in the presence of a uniform magnetic field, using particle image velocimetry (PIV). Our results show that the average angular velocity of the induced rotation has a power-law dependence on the electric current passing through the fluid with an exponent ≈2/3, in excellent agreement with our simulation results, for the same system. To explain the experimental observations we explore all possibilities for inducing rotation in a fluid carrying an electric current. Our theoretical discussion indicates two scenarios wherein applying electric/magnetic field on a current-carrying fluid produces rotational vortices: (i) applying a non-uniform magnetic field in the presence of an electric current and, (ii) applying a magnetic field in the presence of a non-uniform electric current. These two theoretical scenarios for inducing rotation by applying external fields agree well with our experimental observations and simulation results
    corecore