25 research outputs found

    Universal sublinear resistivity in vanadium kagome materials hosting charge density waves

    Full text link
    The recent discovery of a charge density (CDW) state in ScV6_6Sn6_6 at TCDWT_{\textrm{CDW}} = 91 K offers new opportunities to understand the origins of electronic instabilities in topological kagome systems. By comparing to the isostructural non-CDW compound LuV6_6Sn6_6, we unravel interesting electrical transport properties in ScV6_6Sn6_6, above and below the charge ordering temperature. We observed that by applying a magnetic field along the aa axis, the temperature behavior of the longitudinal resistivity in ScV6_6Sn6_6 changes from metal-like to insulator-like above the CDW transition. We show that in the charge ordered state ScV6_6Sn6_6 follows the Fermi liquid behavior while above that, it transforms into a non-Fermi liquid phase in which the resistivity varies sublinearly over a broad temperature range. The sublinear resistivity, which scales by T3/5T^{3/5} is a common feature among other vanadium-containing kagome compounds exhibiting CDW states such as KV3_3Sb5_5, RbV3_3Sb5_5, and CsV3_3Sb5_5. By contrast, the non-Fermi liquid behavior does not occur in LuV6_6Sn6_6. We explain the T3/5T^{3/5} universal scaling behavior from the Coulomb scattering between Dirac electrons and Van Hove singularities; common features in the electronic structure of kagome materials. Finally, we show anomalous Hall-like behavior in ScV6_6Sn6_6 below TCDWT_{\textrm{CDW}}, which is absent in the Lu compound. Comparing the transport properties of ScV6_6Sn6_6 and LuV6_6Sn6_6 is valuable to highlight the impacts of the unusual CDW in the Sc compound.Comment: 12 pages, 6 figures. Power law behavior of resistivity as a function temperature is modified and theoretical explanation is added in the second versio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa

    No full text
    The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms
    corecore