270 research outputs found

    Phase II trial of oral S-1 combined with gemcitabine in metastatic pancreatic cancer

    Get PDF
    We conducted a phase II trial of gemcitabine with S-1, oral fluorouracil (5-FU) prodrug tegafur combined with two modulators, 5-chloro-2, 4-dihydroxypyridine and potassium oxonate, to evaluate the activity and toxicity of such a combination in metastatic pancreatic cancer (MPC) patients. Patients who had pathologically proven pancreatic cancer with metastatic lesions were eligible candidates for entry into the study. S-1 was given orally (30 mg m−2) b.i.d. for 14 consecutive days and gemcitabine (1000 mg m−2) was given on days 8 and 15. The cycle was repeated every 21 days. We enrolled 33 MPC patients. The median number of cycles was eight (range 1–20). Grade 3–4 toxicities were leucopenia (33%), neutropenia (55%), anaemia (9%), thrombocytopenia (15%), anorexia (6%), fever (9%), and interstitial pneumonia (6%). Objective responses were obtained in 16 patients (one complete response and 15 partial responses; response rate, 48%; 95% confidence interval (CI), 33–65). Median survival and 1-year survival rate were 12.5 months (95% CI, 5.9–19.1) and 54% (95% CI, 36–72), respectively. Combination chemotherapy with GEM and S-1 was well tolerated and yielded a significantly high response rate

    EORTC Early Clinical Studies Group early phase II trial of S-1 in patients with advanced or metastatic colorectal cancer

    Get PDF
    Cancer of the colon and rectum is one of the most frequent malignancies both in the US and Europe. Standard palliative therapy is based on 5-fluorouracil/folinic acid combinations, with or without oxaliplatin or irinotecan, given intravenously. Oral medication has the advantage of greater patient convenience and acceptance and potential cost savings. S-1 is a new oral fluorinated pyrimidine derivative. In a nonrandomized phase II study, patients with advanced/metastatic colorectal cancer were treated with S-1 at 40 mg m-2 b.i.d. for 28 consecutive days, repeated every 5 weeks, but by amendment the dose was reduced to 35 mg m-2 during the study because of a higher than expected number of severe adverse drug reactions. In total 47 patients with colorectal cancer were included. In the 37 evaluable patients there were nine partial responses (24%), 17 stable diseases (46%) and 11 patients had progressive disease (30%). Diarrhoea occurred frequently and was often severe: in the 40 and 35 mg m-2 group, respectively, 38 and 35% of the patients experienced grade 3-4 diarrhoea. The other toxicities were limited and manageable. S-1 is active in advanced colorectal cancer, but in order to establish a safer dose the drug should be subject to further investigations

    Phase I trial of oral S-1 combined with gemcitabine in metastatic pancreatic cancer

    Get PDF
    The objective of this study was to determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of S-1, an oral fluorouracil derivative, combined with gemcitabine, the current standard treatment for advanced pancreatic cancer (APC). The subjects were histopathologically proven APC patients with distant metastasis. S-1 was administered orally twice daily each day for 14 days and gemcitabine on days 8 and 15 of each cycle, and this was repeated every 21 days. Doses of each drug were planned as follows: level 1: 800/60, level 2a: 800/80, level 2b: 1000/60, level 3: 1000/80 (gemcitabine (mg m−2)/S-1 (mg m−2 day−1)). In all, 21 patients with APC were enrolled. The main grade 3–4 toxicities observed during first cycle were neutropenia (33%), anaemia (10%), thrombocytopenia (14%) and anorexia (10%). There were no DLT observed in level 1. Three of six patients in level 2a had DLT and this level was considered the MTD. In all, 12 patients in level 2b had no DLT and this level was selected as the recommended dose. Applicable responses were one complete response and nine partial responses (48%). As toxicities were well tolerated and antitumour activities seem to be promising, this combination can be recommended for further phase II studies with APC

    Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound.</p> <p>Methods</p> <p>5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres.</p> <p>Results</p> <p>5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t<sub>1/2</sub>, 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V<sub>D</sub>, 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05).</p> <p>Conclusion</p> <p>In our model system, 5-FU/PEG-PBLG nanoparticles changed the pharmacokinetic behavior of 5-FU, thus increasing its anticancer activity. 5-Fluorouracil loaded nanoparticles have potential as a novel anticancer drug that may have useful clinical applications.</p

    Impacts of excision repair cross-complementing gene 1 (ERCC1), dihydropyrimidine dehydrogenase, and epidermal growth factor receptor on the outcomes of patients with advanced gastric cancer

    Get PDF
    Using laser-captured microdissection and a real-time RT–PCR assay, we quantitatively evaluated mRNA levels of the following biomarkers in paraffin-embedded gastric cancer (GC) specimens obtained by surgical resection or biopsy: excision repair cross-complementing gene 1 (ERCC1), dihydropyrimidine dehydrogenase (DPD), methylenetetrahydrofolate reductase (MTHFR), epidermal growth factor receptor (EGFR), and five other biomarkers related to anticancer drug sensitivity. The study group comprised 140 patients who received first-line chemotherapy for advanced GC. All cancer specimens were obtained before chemotherapy. In patients who received first-line S-1 monotherapy (69 patients), low MTHFR expression correlated with a higher response rate (low: 44.9% vs high: 6.3%; P=0.006). In patients given first-line cisplatin-based regimens (combined with S-1 or irinotecan) (43 patients), low ERCC1 correlated with a higher response rate (low: 55.6% vs high: 18.8%; P=0.008). Multivariate survival analysis of all patients demonstrated that high ERCC1 (hazard ratio (HR): 2.38 (95% CI: 1.55–3.67)), high DPD (HR: 2.04 (1.37–3.02)), low EGFR (HR: 0.34 (0.20–0.56)), and an elevated serum alkaline phosphatase level (HR: 1.00 (1.001–1.002)) were significant predictors of poor survival. Our results suggest that these biomarkers are useful predictors of clinical outcomes in patients with advanced GC
    corecore